
www.manaraa.com

www.manaraa.com

Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques

www.manaraa.com

Antonio Carlos Schneider Beck Fl. � Luigi Carro

Dynamic
Reconfigurable
Architectures
and Transparent
Optimization
Techniques

Automatic Acceleration
of Software Execution

www.manaraa.com

Prof. Antonio Carlos Schneider Beck Fl.
Instituto de Informática
Universidade Federal do Rio Grande
do Sul (UFRGS)
Caixa Postal 15064
Campus do Vale, Bloco IV
Porto Alegre
Brazil
caco@inf.ufrgs.br

Prof. Luigi Carro
Instituto de Informática
Universidade Federal do Rio Grande
do Sul (UFRGS)
Caixa Postal 15064
Campus do Vale, Bloco IV
Porto Alegre
Brazil
carro@inf.ufrgs.br

ISBN 978-90-481-3912-5 e-ISBN 978-90-481-3913-2
DOI 10.1007/978-90-481-3913-2
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010921831

© Springer Science+Business Media B.V. 2010
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:caco@inf.ufrgs.br
mailto:carro@inf.ufrgs.br
http://www.springer.com

www.manaraa.com

To Sabrina,
for her understanding and support

To Antônio and Léia,
for the continuous encouragement

To Ulisses, may his journey be full of joy
To Érika, for all our moments
To Cesare, Esther and Beti, for being there

www.manaraa.com

Preface

As Moore’s law is losing steam, one already sees the phenomenon of clock fre-
quency reduction caused by the excessive power dissipation in general purpose pro-
cessors. At the same time, embedded systems are getting more heterogeneous, char-
acterized by a high diversity of computational models coexisting in a single device.
Therefore, as innovative technologies that will completely or partially replace sili-
con are arising, new architectural alternatives are necessary.

Although reconfigurable computing has already shown to be a potential solution
when it comes to accelerate specific code with a small power budget, significant
speedups are achieved just in very dedicated dataflow oriented software, failing to
capture the reality of nowadays complex heterogeneous systems. Moreover, one
important characteristic of any new architecture is that it should be able to execute
legacy code, since there has already been a large amount of investment into writing
software for different applications. The wide spread usage of reconfigurable devices
is still withheld by the need of special tools and compilers, which clearly preclude
reuse of legacy code and its portability.

The authors have written this book with the aforementioned limitations in mind.
Therefore, this book, which is divided in seven chapters, starts presenting the main
challenges computer architectures are facing these days. Then, a detailed study on
the usage of reconfigurable systems, their main principles, characteristics, poten-
tial and classifications is done. A separate chapter is dedicated to present several
case studies, with a critical analysis on their main advantages and drawbacks, and
the benchmarks used for their evaluation. This analysis will demonstrate that such
architectures need to attack a diverse range of applications with very different be-
haviors, besides supporting code compatibility, that is, the need for no modification
in the source or binary codes. This proves that more must be done to bring recon-
figurable computing to be used as main stream computing: dynamic optimization
techniques. Therefore, binary Translation and different types of reuse, with several
examples, are evaluated. Finally, works that combine both reconfigurable systems
and dynamic techniques are discussed, and a quantitative analysis of one of these
examples is presented. The book ends with some directions that could inspire new
fields of research.

vii

www.manaraa.com

viii Preface

The main purpose of this book is to introduce reconfigurable systems and dy-
namic optimization techniques to the readers, using several examples, so it can be
a source of reference whenever the reader needs. The authors hope you enjoy it, as
they have enjoyed making the research that resulted in this book.

Porto Alegre Antonio Carlos Schneider Beck Fl.
Luigi Carro

www.manaraa.com

Acknowledgements

The authors would like to express their gratitude to the friends and colleagues at
Instituto de Informatica of Universidade Federal do Rio Grande do Sul, and to give
a special thanks to all the people in the Embedded Systems laboratory, who during
several moments contributed for this research for many years.

The authors would also like to thank the Brazilian research support agencies,
CAPES and CNPq.

ix

www.manaraa.com

Contents

1 Introduction . 1
1.1 Challenges . 1
1.2 Main Motivations . 4

1.2.1 Overcoming Some Limits of the Parallelism 4
1.2.2 Taking Advantage of Combinational and Reconfigurable

Logic . 6
1.2.3 Software Compatibility and Reuse of Existent Binary Code 7
1.2.4 Increasing Yield and Reducing Manufacture Costs 8

1.3 This Book . 10
References . 10

2 Reconfigurable Systems . 13
2.1 Introduction . 13
2.2 Basic Principles . 15

2.2.1 Reconfiguration Steps . 15
2.3 Underlying Execution Mechanism 17
2.4 Advantages of Using Reconfigurable Logic 20

2.4.1 Application . 22
2.4.2 An Instruction Merging Example 22

2.5 Reconfigurable Logic Classification 24
2.5.1 Code Analysis and Transformation 24
2.5.2 RU Coupling . 25
2.5.3 Granularity . 27
2.5.4 Instruction Types . 29
2.5.5 Reconfigurability . 30

2.6 Directions . 30
2.6.1 Heterogeneous Behavior of the Applications 31
2.6.2 Potential for Using Fine Grained Reconfigurable Arrays . . 34
2.6.3 Coarse Grain Reconfigurable Architectures 38
2.6.4 Comparing Both Granularities 41

References . 43

xi

www.manaraa.com

xii Contents

3 Deployment of Reconfigurable Systems 45
3.1 Introduction . 45
3.2 Examples of Reconfigurable Architectures 46

3.2.1 Chimaera . 46
3.2.2 GARP . 49
3.2.3 REMARC . 52
3.2.4 Rapid . 55
3.2.5 Piperench (1999) . 57
3.2.6 Molen . 61
3.2.7 Morphosys . 63
3.2.8 ADRES . 66
3.2.9 Concise . 68
3.2.10 PACT-XPP . 69
3.2.11 RAW . 73
3.2.12 Onechip . 75
3.2.13 Chess . 76
3.2.14 PRISM I . 78
3.2.15 PRISM II . 78
3.2.16 Nano . 80

3.3 Recent Dataflow Architectures 81
3.4 Summary and Comparative Tables 83

3.4.1 Other Reconfigurable Architectures 83
3.4.2 Benchmarks . 84

References . 89

4 Dynamic Optimization Techniques 95
4.1 Introduction . 95
4.2 Binary Translation . 95

4.2.1 Main Motivations . 95
4.2.2 Basic Concepts . 97
4.2.3 Challenges . 99
4.2.4 Examples . 100

4.3 Reuse . 109
4.3.1 Instruction Reuse . 109
4.3.2 Value Prediction . 110
4.3.3 Block Reuse . 111
4.3.4 Trace Reuse . 112
4.3.5 Dynamic Trace Memoization and RST 114

References . 115

5 Dynamic Detection and Reconfiguration 119
5.1 Warp Processing . 119

5.1.1 The Reconfigurable Array 120
5.1.2 How Translation Works 121
5.1.3 Evaluation . 123

www.manaraa.com

Contents xiii

5.2 Configurable Compute Array . 124
5.2.1 The Reconfigurable Array 124

5.2.2 Instruction Translator . 125
5.2.3 Evaluation . 128

5.3 Drawbacks . 128
References . 129

6 The DIM Reconfigurable System . 131
6.1 Introduction . 131

6.1.1 General System Overview 133
6.2 The Reconfigurable Array in Details 134
6.3 Translation, Reconfiguration and Execution 135
6.4 The BT Algorithm in Details . 138

6.4.1 Data Structure . 138
6.4.2 How It Works . 139
6.4.3 Additional Extensions . 140
6.4.4 Handling False Dependencies 142
6.4.5 Speculative Execution . 143

6.5 Case Studies . 145
6.5.1 Coupling the Array to a Superscalar Processor 145
6.5.2 Coupling the Array to the MIPS R3000 Processor 149
6.5.3 Final Considerations . 154

6.6 DIM in Stack Machines . 155
6.7 On-Going and Future Works . 156

6.7.1 First Studies on the Ideal Shape of the Reconfigurable
Array . 156

6.7.2 Sleep Transistors . 158
6.7.3 Speculation of Variable Length 159
6.7.4 DSP, SIMD and Other Extensions 159
6.7.5 Design Space to Be Explored 159

References . 159

7 Conclusions and Future Trends . 163
7.1 Introduction . 163
7.2 Decreasing the Routing Area of Reconfigurable Systems 163
7.3 Measuring the Impact of the OS in Reconfigurable Systems 165
7.4 Reconfigurable Systems to Increase the Yield 166
7.5 Study of the Area Overhead with Technology Scaling and Future

Technologies . 167
7.6 Scheduling Targeting to Low-power 168
7.7 Granularity—Comparisons . 168
7.8 Reconfigurable Systems Attacking Different Levels of Instruction

Granularity . 168
7.8.1 Multithreading . 168
7.8.2 CMP . 170

www.manaraa.com

xiv Contents

7.9 Final Considerations . 172
References . 172

Index . 175

www.manaraa.com

Acronyms

ADPCM Adaptive Differential Pulse-Code Modulation
ALU Arithmetic Logic Unit

AMIL Average Merged Instructions Length
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction Set Processor
ATR Automatic Target Recognition

BB Basic Block
BHB Block History Buffer

BT Binary Translator
CAD Computer-Aided Design
CAM Content Addressable Memory
CCA Configurable Compute Accelerator
CCU Custom Computing Unit

CDFG Control Data Flow Graph
CISC Complex Instruction Set Computer
CLB Configurable Logic Block
CM Configuration Manager

CMOS Complementary MetalOxide Semiconductor
CMS Code Morphing Software
CPII Cycles Per Issue Interval

CPLD Complex Programmable Logic Device
CRC Cyclic Redundancy Check

DADG Data Address Generator
DAISY Dynamically Architected Instruction Set from Yorktown

DCT Discrete Cosine Transformation
DES Data Encryption Standard
DFG Data Flow Graph
DIM Dynamic Instruction Merging
DLL Dynamic-Link Library
DSP Digital Signal Processing

DTM Dynamic Trace Memoization

xv

www.manaraa.com

xvi Acronyms

FFT Fast Fourier Transform
FIFO First In, First OutFirst In, First Out

FIR Finite Impulse Response
FO4 Fanout-Of-Four

FPGA Field-Programmable Gate Array
FU Functional Unit

GCC GNU Compiler Collection
GPP General Purpose Processor

GSM Global System for Mobile Communications
HDL Hardware Description Language

I/O Input-Output
IC Integrated Circuit

IDCT Inverse Discrete Cosine Transform
IDEA International Data Encryption Algorithm

ILP Instruction Level Parallelism
IPC Instructions Per Cycle
IPII Instructions Per Issue Interval

IR Instruction Reuse
ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors
JIT Just-In-Time

JPEG Joint Photographic Experts Group
LRU Least Recently Used
LUT Lookup Table
LVP Load Value Prediction

MAC multiplier-accumulator
MAC Multiply Accumulate

MC Motion Compensation
MIMD Multiple Instruction, Multiple Data

MIN Multistage Interconnection Network
MIR Merged Instructions Rate

MMX Multimedia Extensions
MP3 MPEG-1 Audio Layer 3

MPEG Moving Picture Experts Group
NMI Number of Merged Instructions

OFDM Orthogonal frequency-division multiplexing
OPI Operation per Instructions
OS Operating System

PAC Processing Array Cluster
PACT-XPP eXtreme Processing Plataform

PAE Processing Array Elements
PC Program Counter

PCM Pulse-Code Modulation
PDA Personal Digital Assistant

PE Processing Element

www.manaraa.com

Acronyms xvii

PFU Programmable Functional Units
PRISM Processor Reconfiguration through Instruction Set Metamorphosis

RAM Random Access Memory
RAW Read After Write
RAW Reconfigurable Architecture Workstation

RB Reuse Buffer
RC Reconfigurable Cell

REMARC Reconfigurable Multimedia Array Coprocessor
RFU Reconfigurable Functional Unit

RISC Reduced Instruction Set Computer
RISP Reconfigurable Instruction Set Processor
ROM Read Only Memory
RRA Reconfigurable Arithmetic Array
RST Reuse through Speculation on Traces

RT Register Transfer
RTM Reuse Trace Memory

RU Reconfigurable Unit
SAD Sum of Absolute Difference
SCM Supervising Configuration Manager

SDRAM Synchronous Dynamic Random Access Memory
SIMD Single Instruction, Multiple Data
SMT Simultaneous multithreading
SoC System-On-a-Chip
SSE Streaming SIMD Extensions

VHDL VHSIC Hardware Description Language
VLIW Very Long Instruction Word
VMM Virtual Machine Monitor

VP Value prediction
VPT Value Prediction Table

WAR Write After Read
WAW Write After Write

XREG Exchange Registers

www.manaraa.com

Chapter 1
Introduction

Abstract This introductory chapter presents several challenges that architectures
are facing these days, such as the imminent end of the Moore’s law as it is known
today; the usage of future technologies that will replace silicon; the stagnation of
ILP increase in superscalar processors and their excessive power consumption and,
most importantly, how the aforementioned aspects are impacting on the develop-
ment of new architectural alternatives. All these aspects point to the fact that new
architectural solutions are necessary. Then, the main reasons that motivated the writ-
ing of this book are shown. Several aspects are discussed, as the why ILP does not
increase as before; the use of both combinational logic and reconfigurable fabric
to speedup execution of data dependent instructions; the importance of maintaining
binary compatibility, which is the possibility of reusing previously compiled code
without any kind of modification; yield issues and the costs of fabrication. This
chapter ends with a brief review of what will be seen in the rest of the book.

1.1 Challenges

The possibility of increasing the number of transistors inside an integrated circuit
with the passing years, according to Moore’s Law, has been pushing performance
at the same level of growth. However, this law, as known today, will no longer
exist in a near future. The reason is very simple: physical limits of silicon [7, 15].
Because of that, new technologies that will completely or partially replace silicon
are arising. However, according to the ITRS roadmap [12] these technologies have a
high level of density and are slower than traditional scaled CMOS, or the opposite:
new devices can achieve higher speeds but with a huge area and power overhead,
even when comparing to future CMOS technology.

Additionally, high performance architectures as the diffused superscalar ma-
chines are achieving their limits. According to what is discussed in [5] and [13],
there are no novelties in such systems. The advances in ILP (Instruction Level Par-
allelism) exploitation are stagnating: considering the Intel’s family of processors,
the overall efficiency (comparison of processors performance running at the same

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_1, © Springer Science+Business Media B.V. 2010

1

http://dx.doi.org/10.1007/978-90-481-3913-2_1

www.manaraa.com

2 1 Introduction

Fig. 1.1 There is no improvements regarding the overall performance in the Intel’s Family of
processors

clock frequency) has not significantly increased since the Pentium Pro in 1995, as
Fig. 1.1 illustrates. The newest Intel architectures follow the same trend: the Core2
micro architecture has not presented a significant increase in its IPC (Instructions
per Cycle) rate, as demonstrated in [10].

That is because these architectures are challenging some well-known limits of
the ILP [19]. Therefore, the process of trying to increase the ILP has become ex-
tremely costly. In [3], a study on how the dispatch width affects the processor area is
done. For instance, considering a typical superscalar processor based on the MIPS
R10000, the register bank area grows cubically with the dispatch width. Conse-
quently, recent increases in performance have occurred mainly thanks to boosts in
clock frequency, through the employment of deeper pipelines. Even this approach,
though, is reaching its limit.

In [1], the so-called “Mobile Supercomputers” are discussed. In the future, em-
bedded devices will need to perform some intensive computational programs, such
as real-time speech recognition, cryptography, augmented reality etc, besides the
conventional ones, like word and e-mail processing. Figure 1.2 shows that even
considering desktop computer processors, new architectures may not meet the re-
quirements for future embedded systems (performance gap).

Another issue that will restrict performance improvements in those systems is
the limit in the critical path of the pipeline stages: Intel’s Pentium 4 microprocessor
has only 12 fanout-of-four (FO4) gate delays per stage, leaving little logic that can
be bisected to produce even higher clocked rates. This becomes even worse consid-
ering that the delay of those FO4 will increase comparing to other circuitry in the
system [1]. One already can see this trend in the newest Intel processors based on the
Core and Core2 architectures, which have less pipeline stages than the Pentium 4.

Additionally, one should take into account that the potentially largest problem
is excessive power consumption. Still according to [1], future embedded systems
must not exceed 75 mW, since batteries do not have an equivalent Moore’s law. As
previously stated about performance, power spent in future systems is far from the

www.manaraa.com

1.1 Challenges 3

Fig. 1.2 Near future limitations in performance

Fig. 1.3 Power consumption in present and future desktop processors

expected, as it can be observed in Fig. 1.3. Furthermore, leakage power is becom-
ing more important and, while a system is in standby mode, it will be the dom-
inant source of power consumption. Nowadays, in general purpose microproces-
sors, the leakage power dissipation is between 20 and 30 W (considering a total of
100 W) [14].

This way, one can observe that companies are migrating to chip multiprocessors
to take advantage of the extra area available, even though, as this book will show,
there is still a huge potential to speed up a single thread software. In the essence,
the clock frequency increase stagnation, excessive power consumption and higher
hardware costs to ILP exploitation, together with the foreseen slower technologies
that will be used are new architectural challenges to be dealt with.

www.manaraa.com

4 1 Introduction

1.2 Main Motivations

In this section, the main motivations that inspired the writing of this book are dis-
cussed. The first one relates to the hardware limits that architectures are facing in
order to increase the ILP of the running application, as mentioned before. Since the
searching for ILP is becoming more difficult, the second motivation is based on the
use of combinational and reconfigurable logic as a solution to speed up instructions
execution. However, even a technique that could increase the performance should
be passive of implementation in nowadays technology, and still sustain binary com-
patibility. The possibilities of implementation and implications of code reuse lead to
the next motivation. Finally, the last one concerns the future and the uprise of new
technologies, when the reliability and yield costs will become even more important,
with regularity playing a major role to cope with both aspects.

1.2.1 Overcoming Some Limits of the Parallelism

In the future, advances in compiler technology together with significantly new and
different hardware techniques may be able to overcome some limitations of the ILP
exploitation. However, it is unlikely that such advances, when coupled with real-
istic hardware, will overcome all of them. Nevertheless, the development of new
hardware and software techniques will continue to be one of the most important
challenges in computer design.

To better understand the main issues related to ILP exploitation, in [6] assump-
tions are made for an ideal (or perfect) processor, as follows:

1. Register renaming: It is the process of renaming registers in order to avoid false
dependences (classified as Write after Read and Write after Write), so it is possi-
ble to better explore the parallelism of the running application. The perfect pro-
cessor would have an infinite number of virtual registers available to perform this
task and hence all false dependences could be avoided. Therefore, an unbounded
number of data independent instructions could begin to be simultaneously exe-
cuted.

2. Memory-address alias analysis: It is the process of comparing memory refer-
ences encountered in instructions. This is used, for example, to guarantee that
a store would not be executed out of order, before a load, both pointing to the
same address. Some of these references are calculated at run-time and, as differ-
ent instructions can access the same address of the memory in a different order,
data coherence problems could emerge. In the perfect processor, all memory ad-
dresses would be precisely known before the actual execution begins, and a load
could be moved before a store, once provided that both addresses are not identi-
cal.

3. Branch prediction: It is the mechanism responsible for predicting if a given
branch will be taken or not, depending on where the execution currently is and

www.manaraa.com

1.2 Main Motivations 5

based on previous information (in the case of dynamic types). The main objec-
tive is to diminish the number of pipeline stalls due to taken branches. It is also
used as a part of the speculation mechanism to execute instructions beyond basic
blocks. In an ideal processor, all conditional branches would be correctly pre-
dicted, meaning that the predictor would be perfect.

4. Jump prediction: In the same manner, all jumps would be perfectly predicted.
When combined with perfect branch prediction, the processor would have a per-
fect speculation mechanism and, consequently, an unbounded buffer of instruc-
tions available for execution.

While assumptions 3 and 4 would eliminate all control dependences, assump-
tions 1 and 2 would eliminate all but the true data dependences. Together, they mean
that any instruction belonging to the program’s execution could be scheduled on the
cycle immediately following the execution of the predecessor on which it depends.
It is even possible, under these assumptions, for the last dynamically executed in-
struction in the program to be scheduled on the very first cycle. Thus, this set of
assumptions subsumes both control and address speculation and implements them
as if they were perfect.

The analysis of the hardware costs to get as close as possible of this ideal pro-
cessor is quite complicated. For example, let us consider the instruction window,
which represents the set of instructions that are examined for simultaneous execu-
tion. In theory, a processor with perfect register renaming should have an instruc-
tion window of infinite size, so it could analyze all the dependencies at the same
time.

To determine whether n issuing instructions have any register dependences
among them, assuming all instructions are register-register and the total number
of registers is unbounded, one must compare sources and operands of several in-
structions. Thus, to detect dependences among the next 2000 instructions requires
almost four million comparisons to be done in a single cycle. Even issuing only 50
instructions requires 2,450 comparisons. This cost obviously limits the number of
instructions that can be considered for issue at once. To date, the window size has
been in the range of 32 to 126, which requires over 2,000 comparisons. The HP PA
8600 reportedly has over 7,000 comparators [6].

Another good example to illustrate how much hardware a superscalar design
needs to increase the IPC as much as possible is the Alpha 21264 [9]. It issues up
to four instructions per clock and initiates execution on up to six (with significant
restrictions on the instruction type, e.g., at most two load/stores), supports a large set
of renaming registers (41 integer and 41 floating point, allowing up to 80 instructions
in-flight), and uses a large tournament-style branch predictor. Not surprisingly, half
of the power consumed by this processor is related to the ILP exploitation [20].

Other possible implementation constraints in a multiple issue processor, besides
the aforementioned ones, include: issues per clock, functional units latency and
queue size, number of register file ports, functional unit queues, issue limits for
branches, limitations on instruction commit, etc.

www.manaraa.com

6 1 Introduction

1.2.2 Taking Advantage of Combinational and Reconfigurable
Logic

There are always potential gains when changing the execution mode from sequential
to combinational logic. Using a combinational mechanism could be a solution to
speed up the execution of sequences of instructions that must be executed in order,
due to data dependencies. This concept is better explained with a simple example.
Let us have an nxn bit multiplier, with input and output registers. By implementing
it with a cascade of adders, one might have the execution time, in the worst case, as
follows:

Tmultcombinational = tppFF + 2 ∗ n ∗ tcell + tsetFF (1.1)

where tcell is the delay of an AND gate plus a 2-bits full-adder, tppFF the time
propagation of a Flip-Flop, and tsetFF the set time of the Flip-Flop.

The area of this multiplier is

Acombinational = n2 ∗ Acell + Aregisters (1.2)

considering Acell and Aregisters as the area occupied by the two bit multiplier cell
and registers, respectively.

If one could do the same multiplier by the classical shift and add algorithm, and
assuming a carry propagate adder, the multiplication time would be

Tmultsequential = n ∗ (tppFF + n ∗ tcell + tsetFF) (1.3)

And the area given by

Asequential = n ∗ Acell + Acontrol + Aregisters (1.4)

with Acontrol being the area overhead due to the control unit.
Comparing equations (1.1) with (1.2), and (1.3) with (1.4), it is clear that by using

a sequential circuit one trades area by performance. Any circuit implemented as a
combinational circuit will be faster than a sequential one, but will most certainly
take much more area.

Therefore, the main idea on using reconfigurable hardware is to somehow take
advantage of the speedups presented by using combinational logic to perform a
given computation. According to [17], with reconfigurable systems, developers can
implement circuits that have the potential of being hundreds of times faster than con-
ventional microprocessors. Besides the aforementioned advantage of using a more
efficient circuit implementation, the origin of these huge speedups also comes from
the circuit’s concurrency at various levels (bit, arithmetic and so on). Certain types
of applications, which involve intensive computations, such as video and audio pro-
cessing, encryption, compression, etc are the best candidates for optimization using
reconfigurable logic. The programming paradigm is changed, though. Instead of
thinking just about temporal programming (one instruction coming after another),

www.manaraa.com

1.2 Main Motivations 7

it is also necessary to consider spatial oriented models. Considering that reconfig-
urable systems can be programmed the same way software is to be executed on
processors, the author in [16] claims that the hardware is “softening”.

This subject will be better explored and explained latter in this book.

1.2.3 Software Compatibility and Reuse of Existent Binary Code

Among thousands of products launched every day, one can observe those which
become a great success and those which completely fail. The explanation perhaps is
not just about their quality, but it is also about their standardization in the industry
and the concern of the final user on how long the product he is acquiring will be
subject to updates.

The x86 architecture is one of these major examples. Considering nowadays stan-
dards, the X86 ISA (Instruction Set Architecture) itself does not follow the last
trends in processor architectures. It was developed at a time when memory was con-
sidered very expensive and developers used to compete on who would implement
more and different instructions in their architectures. Its ISA is a typical example
of a traditional CISC machine. Nowadays, the newest X86 compatible architectures
spend extra pipeline stages plus a considerable area in control logic and micropro-
grammable ROM just to decode these CISC instructions into RISC like ones. This
way, it is possible to implement deep pipelining and all other high performance
RISC techniques maintaining the x86 instruction set and, consequently, backward
compatibility.

Although new instructions have been included in the x86 original instruction
set, like the SIMD MMX and SSE ones [4], targeted to multimedia applications,
there is still support to the original 80 instructions implemented in the very first
X86 processor. This means that any software written for any x86 in any year, even
those launched at the end of seventies, can be executed on the last Intel processor.
This is one of the keys to the success of this family: the possibility of reusing the
existing binary code, without any kind of modification. This was one of the main
reasons why this product became the leader in its market. Intel could guarantee to
its consumers that their programs would not be surpassed during a long period of
time and, even when changing the system to a faster one, they would still be able to
reuse and execute the same software again.

Therefore, companies such as Intel and AMD keep implementing more power
consuming superscalar techniques and trying to push the frequency increase for their
operation to the extreme. More accurate branch predictors, more advanced algo-
rithms for parallelism detection, or the use of Simultaneous Multithreading (SMT)
architectures like the Intel Hyperthreading [8], are some of the known strategies.
However, the basic principle used for high performance architectures is still the
same: superscalarity. While the x86 market is expanding even more, one can ob-
serve a decline in the use of more elegant and efficient instruction set architectures,
such as the Alpha and the PowerPC processors.

www.manaraa.com

8 1 Introduction

1.2.4 Increasing Yield and Reducing Manufacture Costs

In [11], a discussion is made about the future of the fabrication processes using
new technologies. According to it, standard cells, as they are today, will not exist
anymore. As the manufacturing interface is changing, regular fabrics will soon be-
come a necessity. How much regularity versus how much configurability (as well as
the granularity of these regular circuits) is still an open question. Regularity can be
understood as the replication of equal parts, or blocks, to compose a whole. These
blocks can be composed of gates, standard-cells, standard-blocks and so on. What
is almost a consensus is the fact that the freedom of the designers, represented by
the irregularity of the project, will be more expensive in the future. By the use of
regular circuits, the design company will decrease costs, as well as the possibility
of manufacturing faults, since the reliability of printing the geometries employed
today in 65 nanometers and below is a big issue. In [2] it is claimed that maybe the
main focus for researches when developing a new system will be reliability, instead
of performance.

Nowadays, the resources to create an ASIC design of moderate high volume,
complexity and low power, are considered very high. Some design companies can
do it because they have experienced designers, infrastructure and expertise. How-
ever, for the same reasons, there are companies that just cannot afford it. For these
companies, a more regular fabric seems the best way to go as a compromise using an
advanced process. As an example, in 1997 there were 11,000 ASIC design startups.
This number dropped to 1,400 in 2003 [18]. The mask cost seems to be the primary
problem. The estimative in 2003 for the ASIC market is that it had 10,000 designs
per year with a mask cost of $20,000. The mask cost for 90-nanometer technology
is around $2 million. This way, to maintain the same number of ASIC designs, their
costs need to return to tens of thousands of dollars.

The costs concerning the lithography toolchain to fabricate CMOS transistors is
one of the major responsible for the high expenses. According to [14], the costs
related to lithography steppers increased from $10 to $35 million in this decade, as
can be observed in Fig. 1.4. Therefore, the cost of a modern factory varies between
$2 and $3 billion. On the other hand, the cost per transistor decreases. Even though
it is more expensive to build a circuit nowadays, more transistors are integrated onto
one die.

Moreover, it is very likely that the cost of doing the design and verification is
growing in the same proportion, increasing even more the final cost. Table 1.1 shows
sample non-recurring engineering (NRE) costs for different CMOS IC technolo-
gies [18]. At 0.8 mm technology, the NRE costs were only about $40,000. With
each advance in IC technology, the NRE costs have dramatically increased. NRE
costs for 0.18 mm design are around $350,000, and at 0.13 mm, the costs are over
$1 million. This trend is expected to continue at each subsequent technology node,
making it more difficult for designers to justify producing an ASIC using nowadays
technologies.

Furthermore, the time it takes a design to be manufactured at a fabrication facility
and returned to the designers in the form of an initial IC (turnaround time) has also

www.manaraa.com

1.2 Main Motivations 9

Fig. 1.4 Power consumption in present and future desktop processors

Table 1.1 IC NRE costs and turnaround

increased. Table 1.1 provides the turnaround times for four technology nodes. They
have almost doubled between 0.8 and 0.13 mm technologies. Longer turnaround
times lead to larger design costs, and even possible loss of revenue if the design is
late to the market.

Because of all these reasons discussed before, there is a limit in the number of
situations that can justify producing designs using the latest IC technology. In 2003,
less than 1,000 out of every 10,000 ASIC designs had high enough volumes to jus-
tify fabrication at 0.13 mm [18]. Therefore, if design costs and times for producing a
high-end IC are becoming increasingly large, just few of them will justify their pro-
duction in the future. The problems of increasing design costs and long turnaround
times are made even more noticeable due to increasing market pressures. The time
during which a company seeks to introduce a product into the market is shrinking.
This way, the designs of new ICs are increasingly being driven by time-to-market
concerns.

Nevertheless, there will be a crossover point where, if the company needs a more
customized silicon implementation, it needs be to able to afford the mask and pro-
duction costs. However, economics are clearly pushing designers toward more reg-
ular structures that can be manufactured in larger quantities. Regular fabric would
solve the mask cost and many other issues such as printability, extraction, power
integrity, testing, and yield.

www.manaraa.com

10 1 Introduction

1.3 This Book

Different trends can be observed in the hardware industry, which are presently being
required to run several different applications with distinct behaviors, becoming more
heterogeneous. At the same time, users also demand an extended operation, with
extra pressure for energy efficiency. While transistor size shrinks, processors are
getting more sensitive to fabrication defects, aging and soft faults, increasing the
costs associated to their production. To make this situation even worse, designers are
stuck with the need to keep binary compatibility, in order to support the huge amount
of software already deployed. Therefore, taking into consideration all the issues
and motivations previously stated, this book discusses several strategies for solving
the aforementioned problems, focusing mainly on reconfigurable architectures and
dynamic optimizations techniques.

Chapter 2 discusses the principles related to reconfigurable systems. The po-
tential of executing sequences of instructions in pure combinational logic is also
shown. Moreover, a high-level comparison between two different types of recon-
figurable systems is performed, together with a detailed analysis of the programs
that could be executed on these architectures. Chapter 3 presents a large number of
examples of these reconfigurable systems, with a critical analysis of their classifi-
cation and employed benchmarks. At the end of this chapter it is demonstrated that
most of these architectures can present performance boosts just on a very specific
subset of benchmarks, which does not reflect the reality of the whole set of appli-
cations both embedded and general purpose systems are executing in these days.
Therefore, in Chap. 4 two techniques related to dynamic optimization are presented
in details: dynamic reuse and binary translation. In Chap. 5, studies that already
use both reconfigurable systems and dynamic optimization combined together are
discussed. Chapter 6 presents a deeper analysis of one of these techniques, show-
ing a quantitative study on performance, power, energy and area. Finally, the last
chapter discusses future work and trends regarding the subjects previously studied,
concluding this book.

References

1. Austin, T., Blaauw, D., Mahlke, S., Mudge, T., Chakrabarti, C., Wolf, W.: Mobile supercom-
puters. Computer 37(5), 81–83 (2004). doi:10.1109/MC.2004.1297253

2. Burger, D., Goodman, J.R.: Billion-transistor architectures: There and back again. Computer
37(3), 22–28 (2004). doi:10.1109/MC.2004.1273999

3. Burns, J., Gaudiot, J.L.: Smt layout overhead and scalability. IEEE Trans. Parallel Distrib.
Syst. 13(2), 142–155 (2002). doi:10.1109/71.983942

4. Conte, G., Tommesani, S., Zanichelli, F.: The long and winding road to high-performance im-
age processing with mmx/sse. In: CAMP’00: Proceedings of the Fifth IEEE International
Workshop on Computer Architectures for Machine Perception (CAMP’00), p. 302. IEEE
Computer Society, Los Alamitos (2000)

5. Flynn, M.J., Hung, P.: Microprocessor design issues: Thoughts on the road ahead. IEEE Micro
25(3), 16–31 (2005). doi:10.1109/MM.2005.56

http://dx.doi.org/10.1109/MC.2004.1297253
http://dx.doi.org/10.1109/MC.2004.1273999
http://dx.doi.org/10.1109/71.983942
http://dx.doi.org/10.1109/MM.2005.56

www.manaraa.com

References 11

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn.
Morgan Kaufmann, San Mateo (2006)

7. Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir,
M., Narayanan, V.: Leakage current: Moore’s law meets static power. Computer 36(12), 68–75
(2003). doi:10.1109/MC.2003.1250885

8. Koufaty, D., Marr, D.T.: Hyperthreading technology in the netburst microarchitecture. IEEE
Micro 23(2), 56–65 (2003)

9. McLellan, E.J., Webb, D.A.: The alpha 21264 microprocessor architecture. In: ICCD’98: Pro-
ceedings of the International Conference on Computer Design, p. 90. IEEE Computer Society,
Los Alamitos (1998)

10. Prakash, T.K., Peng, L.: Performance characterization of spec cpu2006 benchmarks on Intel
core 2 duo processor. ISAST Trans. Comput. Softw. Eng. 2(1), 36–41 (2008)

11. Rutenbar, R.A., Baron, M., Daniel, T., Jayaraman, R., Or-Bach, Z., Rose, J., Sechen, C.:
(when) will fpgas kill asics? (panel session). In: DAC’01: Proceedings of the 38th Annual
Design Automation Conference, pp. 321–322. ACM, New York (2001). doi:10.1145/378239.
378499

12. Semiconductors, T.I.T.R.: Itrs 2008 edition. Tech. Rep., ITRS (2008). http://www.itrs.net
13. Sima, D.: Decisive aspects in the evolution of microprocessors. Proc. IEEE 92(12), 1896–1926

(2004)
14. Thompson, S., Parthasarathy, S.: Moore’s law: The future of si microelectronics. Mater. Today

9(6), 20–25 (2006)
15. Thompson, S.E., Chau, R.S., Ghani, T., Mistry, K., Tyagi, S., Bohr, M.T.: In search of “for-

ever,” continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf.
18(1), 26–36 (2005). doi:10.1109/TSM.2004.841816

16. Vahid, F.: The softening of hardware. Computer 36(4), 27–34 (2003). doi:10.1109/MC.2003.
1193225

17. Vahid, F.: It’s time to stop calling circuits “hardware”. Computer 40(9), 106–108 (2007).
doi:10.1109/MC.2007.322

18. Vahid, F., Lysecky, R.L., Zhang, C., Stitt, G.: Highly configurable platforms for embedded
computing systems. Microelectron. J. 34(11), 1025–1029 (2003)

19. Wall, D.W.: Limits of instruction-level parallelism. In: ASPLOS-IV: Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 176–188. ACM, New York (1991). doi:10.1145/106972.106991

20. Wilcox, K., Manne, S.: Alpha processors: A history of power issues and a look to the fu-
ture. In: Proceedings of the Cool-Chips Tutorial. Held in Conjunction with the International
Symposium on Microarchitecture. ACM/IEEE, New York (1999)

http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1145/378239.378499
http://dx.doi.org/10.1145/378239.378499
http://www.itrs.net
http://dx.doi.org/10.1109/TSM.2004.841816
http://dx.doi.org/10.1109/MC.2003.1193225
http://dx.doi.org/10.1109/MC.2003.1193225
http://dx.doi.org/10.1109/MC.2007.322
http://dx.doi.org/10.1145/106972.106991

www.manaraa.com

Chapter 2
Reconfigurable Systems

Abstract As previously discussed, it is possible to take advantage of reconfigurable
computing to overcome the main problems that nowadays architectures are facing.
Therefore, this chapter aims to explain the basics of reconfigurable systems. It starts
with a basic explanation on how these architectures work, their main principles and
steps. After that, the principle of merged instruction is introduced, showing how a
reconfigurable unit can increase the IPC and affect the number of instructions issued
and executed per cycle. The second part of this chapter starts with an overview on the
classification of reconfigurable systems, including granularity, instruction types and
coupling. Finally, the chapter presents a detailed analysis of the potential gains that
reconfigurable computing can present, discussing the main differences, advantages
and drawbacks of fine and coarse grain reconfigurable units.

2.1 Introduction

Reconfigurable systems are those architectures that have the capability to adapt
themselves to a given application, providing some kind of hardware specialization
to it. Through this adaptation, they are expected to achieve great improvements, in
terms of performance acceleration and energy savings, when compared to general
purpose, fixed instruction set processors. However, because of this certain level of
flexibility, the gains are not as high as in Application-Specific Instruction Set Pro-
cessors (ASIPs) [30] or Application-Specific Integrated Circuits (ASICs) [36].

As an example, let us consider an old ASIC, the STA013. It is an MP3 decoder
produced by ST Microelectronics few years ago. It can decode music, at real time,
running at 14.7 MHz. Can one imagine the last Intel General Purpose Processor
(GPP) decoding an MP3 at real time with that operating frequency? The chip pro-
vided by ST is cheaper, faster and consumes less power than any processor that
could perform the same task at real time. However, it cannot do anything more than
MP3 decoding. For complex systems found nowadays, with a wide range of dif-
ferent applications being executed on it, the Application-Specific approach would

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_2, © Springer Science+Business Media B.V. 2010

13

http://dx.doi.org/10.1007/978-90-481-3913-2_2

www.manaraa.com

14 2 Reconfigurable Systems

Fig. 2.1 Reconfigurable systems: hardware specialization with flexibility

lead to a huge die size, becoming very expensive, since a large number of hardware
components would be necessary. On the other hand, a GPP would be able to execute
everything, but it is very likely that it would not satisfy either performance or energy
constraints of this system.

Reconfigurable architectures were created exactly to fill the gap between spe-
cialized hardware and general purpose processing with generic devices. This way, a
reconfigurable architecture can be viewed as an intermediate approach between an
Application-Specific hardware and a GPP, as Fig. 2.1 illustrates. A reconfigurable
system could be configured according to the task at hand, meeting the aforemen-
tioned system constraints with a reasonable area occupation, and still being useful
for other general-purpose applications. Hence, as Application-Specific components
have specialized hardware that accelerate the execution of the applications they were
designed for, a system with reconfigurable capabilities would have almost the same
benefit without having to commit the hardware into silicon for just one applica-
tion: computational structures could be adapted after design, in the same way pro-
grammable processors can adapt to application changes.

It is important to discuss why reconfigurable architectures can be useful in an-
other point of view. First, let us remember that current architectures used nowadays
are based on the Von Neumann model. The problem there is that the Von Neumann
model is control-driven, meaning that its execution is based on the program counter.
This way, these architectures are still withheld by the so-called Von Neumann bot-
tleneck. Besides representing the data traffic problem, it also has kept people tied to
word-at-a-time thinking, instead of encouraging one to think in terms of the larger
conceptual units of the task at hand. In contrast, dataflow machines are data-driven:
the execution of a given part of the software starts soon after the data required for
such operation is ready, so they can explore the maximum parallelism available in
the application. However, the employment of dataflow machines implies in the use
of special compilers or tools and, most importantly, it changes the programming
paradigm. The greatest advantage of reconfigurable architectures is that they can
merge both concepts, making possible the use of the very same principle of dataflow
architectures, but still using already available tools and compilers, maintaining the
programming paradigm.

www.manaraa.com

2.2 Basic Principles 15

Fig. 2.2 The basic principle of a system making use of reconfigurable logic

2.2 Basic Principles

As already discussed, a reconfigurable architecture is the system that has the ability
to adapt itself to perform several and different hardware computations, according
to the needs of a given program. This program will not be necessarily always the
same. In Fig. 2.2, the basic principle of a computational system working together
with a reconfigurable hardware is illustrated. Usually, it is comprised of a recon-
figurable logic implemented in hardware, a special component to control and re-
configure it (sometimes it is also responsible for the communication mechanism), a
context memory to keep the configurations, and a GPP. Pieces of code are executed
on reconfigurable logic (gray), while others are executed by the GPP (dark). The
main challenge is to find the best tradeoff considering which pieces of code should
be executed on reconfigurable logic. The more software is being executed on re-
configurable logic the better, since it is being executed in a more efficient manner.
However, there is a cost associated to it: the need for extra area and memory, which
are obviously limited resources.

Systems provided of reconfigurable logic are often called Reconfigurable Instruc-
tion Set Processors (RISP) [22], and they will be the focus of this and the next
chapters. The reconfigurable logic includes a set of programmable processing units,
which can be reconfigured in the field to implement logic operations or functions,
and programmable interconnections between them.

2.2.1 Reconfiguration Steps

To execute a program taking advantage of the reconfigurable logic, usually the fol-
lowing steps are necessary (illustrated in Fig. 2.3):

1. Code Analysis: the first thing to do is to identify parts of the code that can be
transformed for execution on the reconfigurable logic. The goal of this step is to
find the best tradeoff considering performance and available resources regarding

www.manaraa.com

16 2 Reconfigurable Systems

Fig. 2.3 Basic steps in a reconfigurable system

the reconfigurable unit (RU). Usually, the code is not analyzed statically: an exe-
cution trace that was previously generated is employed, so dynamic information
can be extracted, since it is hard to figure (sometimes impossible) the most ex-
ecuted kernels by just analyzing the source or assembly code. This step can be
performed either by automated tools or manually by the designer.

2. Code transformation: Once the best candidate parts of code to be accelerated
(named as hot spots or kernels) are found, they need to be replaced by reconfig-
urable instructions. The reconfigurable instructions will be handled by the control
unit of the reconfigurable system. The source code of the processor can also be
modified to explicitly communicate with the reconfigurable logic, using native
processor instructions.

3. Reconfiguration: After code transformation, it is time to send it to the reconfig-
urable system. When a reconfigurable instruction is found, the programmable
components of the reconfigurable logic are organized as a function according to
that instruction. This is achieved by downloading from a special memory a set of
configuration bits, called configuration context. The time needed to configure the

www.manaraa.com

2.3 Underlying Execution Mechanism 17

whole system is called reconfiguration time, while the memory required for stor-
ing the reconfiguration data is called context memory. Both the reconfiguration
time and context memory constitute the reconfiguration overhead.

4. Input Context Loading: To perform a given reconfigurable operation, a set of
inputs is necessary. They can come from the register file, a shared memory or
even be transmitted using message passing.

5. Execution: After the reconfigurable unit is set and the proper input operands
are ready, execution begins. The operation will be executed in a more efficient
manner in comparison with the execution on a GPP.

6. Write back: The results of the reconfigurable operation are saved back to the
register file, to the memory or transmitted from the reconfigurable unit to the
reconfigurable control unit or GPP.

Steps 3 to 6 are repeated while reconfigurable instructions are found in the code,
until the end of its execution.

2.3 Underlying Execution Mechanism

To understand how the gains are obtained by the employment of reconfigurable
logic, let us start with a very simple example, considering that one wants to build a
circuit to multiply a given number by the constant seven. For that, the designer has
only two available components: adders and registers. The first choice is to use just
one adder and one register (Fig. 2.4a). The result would be generated by repeating
seven times the sum operation, so six cycles would be necessary, considering that
the register had been reset at the beginning of the operation.

Another choice is to completely replace sequential for combinational logic,
eliminating the register and putting six adders directly connected to each other

Fig. 2.4 Different ways of
performing the same
computation

www.manaraa.com

18 2 Reconfigurable Systems

(Fig. 2.4b). The critical path of the circuit will increase, thereby increasing the
clock period of the system. However, when considering the total execution time,
the second option will be faster, since setup and hold times of the register have been
removed. In a certain way, this represents the difference between control and data
driven executions commented before. In the first case, the next computation will be
performed at the next cycle. In the second case, the next computation will start soon
after the previous one was ready.

One could write that the Execution Time (ET) for an algorithm mapped to hard-
ware is

Asequential = n ∗ Acell + Acontrol + Aregisters (2.1)

ET = numbercycles ∗ cycletime (2.2)

And for the hardware algorithm of figure (Fig. 2.4a) one has

ETa = 6 ∗ [TpFF + Tadder + Tset] (2.3)

and for (Fig. 2.4b) one has

ETb = 1 ∗ [6 ∗ Tadder] (2.4)

and one immediately verifies the second case is faster because the delays of the flip-
flops are not in the critical path. However, since one is dealing with combinational
logic, one could further optimize by substituting the adder chain by an adder tree,
as in Fig. 2.4c, and hence the new execution time would be given by

ETc = 2 ∗ [3 ∗ Tadder] (2.5)

This would be a compromise of both aforementioned examples. However, the
main idea remains the same: to replace, in some level, sequential for combinational
logic to group a sequence of operations (or instructions) together. It is interesting to
note that in real life circuits, sometimes putting more combinational data to work
in a sequential fashion would not increase the critical path, since this path could be
localized somewhere else. In some processors, for example, the functional units are
not responsible for the critical path of the circuit, so grouping them together may be
a good idea.

This way, grouping instructions together to be executed in a more efficient mech-
anism is the main principle of any kind of application specific hardware, such as
ASIP or ASIC. More area is occupied and, consequently, more power is spent. How-
ever, one should note that fewer flip-flops are used, and these are a major source of
power dissipation. Moreover, as less time is necessary to compute the operations
(hence there are performance gains), it is very likely that there will be also energy
savings.

Now, let us take the same adder chain presented before, and replace the adders
for complete ALUs. Besides, different values can be used as input for these new

www.manaraa.com

2.3 Underlying Execution Mechanism 19

Fig. 2.5 Principles of reconfiguration

ALUs, as it can be observed in Fig. 2.5a. More area is being spent, and it is very
likely that the circuit will not be fast as it was before (for example, at least one
multiplexer was added at the end of the ALU to select which operation to send as
output). Moreover, more control circuitry is necessary (to configure the ALUs). On
the other hand, now there is certain flexibility: any arithmetic and logic operation
can be performed. Extending this concept even more, it is possible to add ALUs
working in parallel, and multiplexers to route the values between them (Fig. 2.5b).
Again, the critical path increases, even more control hardware is necessary, but there
is still more flexibility, besides the possibility of executing operations in parallel.
The main principle remains the same: to group instructions to be executed in a more
efficient manner, but now with some flexibility. This is, in fact, an example of a
coarse grain reconfigurable array, and it will be seen in more details later in this
chapter.

Figure 2.6 graphically shows the difference between using reconfigurable logic
and a traditional parallel architecture to execute instructions. The upper part of the
figure demonstrates the execution of several instructions on a traditional parallel ar-
chitecture, such as the superscalar ones. These instructions are represented as boxes.
Those that have the same texture represent instructions that are data dependent and
hence cannot be executed in parallel, while non-dependent instructions can be ex-
ecuted concurrently. There is a limit, though: no matter how many functional units
are available, sequences of dependent instructions must be executed in order. On the
other hand, by using the data-driven approach and combinational logic, one is able to
reduce the time spent by executing exactly the sequences of dependent instructions
in a more efficient manner (avoiding the flip-flop delays in the reconfigurable logic),

www.manaraa.com

20 2 Reconfigurable Systems

Fig. 2.6 Performance gains obtained when using reconfigurable logic

at the cost of extra area. Consequently, as a legacy of dataflow machines, reconfig-
urable systems, besides being able to explore the parallelism between instructions,
can also speed up instructions which are data dependent between themselves, in
opposite to traditional architectures.

2.4 Advantages of Using Reconfigurable Logic

The widely used Patterson [27] metrics of relative performance through measures
such as IPC (Instructions Per Cycle) are well suited for comparing different pro-
cessor technologies and ISA (Instruction Set Architecture), as it abstracts concepts
such as clock frequency. As described in [34], however, to better understand the
performance evolution in the microprocessor industry, it is interesting to note the
Absolute Processor Performance (Ppa) metric denoted as:

Ppa = fc ∗ 1/CPII ∗ IPII ∗ OPI(operations/sec) (2.6)

In (2.6), CPII, IPII and OPI are described respectively as Cycles Per Issue Inter-
val, Instructions Per Issue Interval and Operation per Instructions, while fc is the
operating clock frequency. The first two metrics, when multiplied, form the known
IPC rate. Nevertheless, it is interesting to keep these factors separated in order to
better expose speed-up potentials.

The CPII rate informs the intrinsic temporal parallelism of the microarchitecture,
showing how frequently new instructions are issued to execution. The IPII variable
is related to the issue parallelism, or the average number of dynamically fetched
instructions issued to execution per issue interval. Therefore, temporal (CPII) and

www.manaraa.com

2.4 Advantages of Using Reconfigurable Logic 21

issue (IPII) parallelisms can be illustrated by the following equations:

IPII = (Number of Instructions)/(Number of issues) (2.7)

CPII = (Number of Cycles)/(Number of Issues) (2.8)

Finally, the OPI metric measures intra-instruction parallelism, or the number of
operations that can be issued through a single binary instruction word. It is impor-
tant to notice that one should distinguish the OPI from the IPII rate, since the first
reflects changes in the binary code that should be adapted statically to boost intrain-
struction parallelism, such as data parallelism found in SIMD architectures, while
the second is related to the number of instructions that are dynamically issued to be
executed in parallel, such as the ones sent for execution in a superscalar processor
after scheduling. Figure 2.7 illustrates these three metrics.

Throughout the microprocessor evolution history, several approaches have been
considered to improve performance by manipulating one or more of the factors of
(2.6). One of these approaches, for example, deals with the CPII metric by increas-
ing instructions throughput with pipelining [27]. Moreover, the CPII metric has also
been well covered with efficient branch prediction mechanisms and memory hierar-
chies, though this metric is still limited by pipeline stalls such as the ones caused by
cache misses. The OPI rate has been dealt with the development of complex CISC
instructions or SIMD architectures. On the other hand, few solutions other than the
superscalar approach since the 90’s explored the opportunity of increasing the IPII
rate.

Fig. 2.7 Gains obtained
when using reconfigurable
logic

www.manaraa.com

22 2 Reconfigurable Systems

2.4.1 Application

A reconfigurable system targets to increase exactly the IPII rate. As can be observed
in (2.7), in order to increase the IPII number, it is necessary to increase the execu-
tion efficiency by decreasing the number of issues. Considering that a sequence of
instructions is identified and grouped to be executed on the reconfigurable system,
more instructions will be issued by issue interval (so increasing the IPII rate). Equa-
tion (2.9) shows how the number of issues is affected by the technique:

Number of Issues = Total number of executed Instructions + NMI ∗ (1 − AMIL)

(2.9)
where the Average Merged Instructions Length (AMIL) is the average group size
in number of instructions; while the Number of Merged Instructions (NMI) counts
how many merged instructions1 were issued for execution on the combinational
logic. This can be represented by the following equation:

NMI = MIR ∗ Total number of executed Instructions (2.10)

MIR is denoted as the Merged Instructions Rate. This is an important factor as
it exposes the density of grouped operations that can be found in an application. If
MIR is equal to one, then the whole application was mapped into an efficient mech-
anism, and there is no need for a processor, which is actually the case of specialized
hardware (ASIPs or ASICs) or complete dataflow architectures.

Furthermore, doing a deeper analysis, one can conclude that the ideal CPII also
equals to one, which means that the functional units are constantly fed by instruc-
tions every cycle. However, due to pipeline stalls or to instructions with high delays,
the CPII variable tends to be of a greater value. In fact, manipulating this factor is
a bit more complicated, as both the number of cycles and the number of issues are
affected by the execution of instructions on reconfigurable logic. As it will be shown
in the example, there are times when the CPII will increase; this is actually a con-
sequence of the augmented number of operations issued in a group of instructions.

This way, one thing that must be assured is that the CPII rate will not grow in a
manner to cancel the IPC gains caused by the increase of IPII. In other words, if the
number of issues decreases, the number of cycles taken to execute instructions also
has to decrease. Consequently, a fast mechanism is necessary for reconfiguring the
hardware and executing instructions.

2.4.2 An Instruction Merging Example

The following example illustrates the concept previously proposed.
Figure 2.8a shows a hypothetical trace with instructions a, b, c, d and e, and the

cycles at which the instruction execution ends. If one considers that a given GPP

1In this chapter the set of instructions that are executed on reconfigurable hardware is called merged
instructions; in previous works, several and different names have been used.

www.manaraa.com

2.4 Advantages of Using Reconfigurable Logic 23

architecture has an IPII rate of one, typical of RISC scalar architectures, and that
inst d causes a pipeline stall of 5 cycles (for instance, this instruction must wait for
the result of another one, in a typical case of true data dependence), while all other
instructions are executed in one cycle, this trace of 14 instructions would take 18
cycles to execute. This results in a CPII of 1.28 and an IPC of 0.78.

If, however, instructions of number one to five are merged (which is represented
by Inst M, as shown in Fig. 2.8b, and executed in two cycles, the whole sequence
would then be executed in 14 cycles. Note that the left column in Fig. 2.8b represents

Fig. 2.8 (a) Execution trace
of a given application;
(b) Trace with one merged
instruction; (c) Trace with
two merged instructions

www.manaraa.com

24 2 Reconfigurable Systems

the issue number of the instruction group. Therefore, one would find the following
numbers: CPII = 1.5, AMIL = 5, and MIR = 1/14 = 0.07. Because of the capability
of speeding up the fetch and execution of the merged instructions, the final IPII
would increase to 1.4. Even though the CPII would increase from 1.28 to 1.5, the
IPC rate would grow from 0.78 to 1.

Nevertheless, one could expect further improvements if merged instructions in-
cluded Inst d, which caused a stall of 5 cycles in the processor pipeline. Suppos-
ing that the sequence of instructions b, d and e (issue numbers of 5, 6 and 7 in
Fig. 2.8b) is merged into instruction M2 and executed in 3 cycles, it would pro-
duce an impact on the CPII that would go down to 1.375 while the IPII would rise
to 1.75, resulting in an IPC equals to 1.27. In this example, the fact of executing
these instructions in a dataflow manner would mask the delay effects of data de-
pendency. This is illustrated in Fig. 2.8c. This way, when using a reconfigurable
system, the interval of execution between a set of instruction and another can be
longer than the usual. However, as more instructions are executed per time slice,
IPC increases.

Later in this chapter, an ideal solution is analyzed, which is capable of executing
merged instructions in just one cycle, meaning that the CPII inside the reconfig-
urable fabric is 1. This will show the potential gains of using reconfigurable logic
when affecting the AMIL and IPII rates.

2.5 Reconfigurable Logic Classification

In the reconfigurable field, there is a great variety of classifications, as it can be
observed in some surveys published about the subject [22, 25, 35, 37]. In this book,
the most common ones are discussed.

2.5.1 Code Analysis and Transformation

This subject concerns how the best hot spots are found in order to replace them with
reconfigurable instructions (transforming the code) and the level of automation of
this process.

Code analysis can be done in the binary/source code, or yet in the trace generated
from the execution of the program on the target GPP. The designer can find the hot
spots analyzing the source code (looking for loops with great number of interactions,
for instance), or the trace. The greatest advantage of using the trace is that it contains
dynamic information. For instance, the designer cannot know if loops with non-fixed
bounds are the most used ones by only analyzing the source code. The designer can
also benefit from automated tools to do this job. These tools usually work on the
trace and can indicate to the designer which are the most executed kernels.

After the hot spots were found, it is time to replace them with reconfigurable
instructions. These instructions are related to the communication, reconfiguration

www.manaraa.com

2.5 Reconfigurable Logic Classification 25

Fig. 2.9 Analysis and transformation of a code sequence based on DFG analysis

and execution processes. Again, the level of automation is variable. It could be the
designer’s responsibility the whole work of replacing the hotspots with reconfig-
urable instructions directly in the assembly code. Yet, code annotation can be used.
For instance, macros can be employed in the source code to indicate that there will
be a reconfigurable instruction. The assembler then will be used to automatically
generate the modified code. Finally, there is the complete automated process: given
a set of constraints related to a given reconfigurable architecture, a tool will obtain
information about the most used hot spots and transform them to reconfigurable
instructions, handling issues such as communication between the GPP and recon-
figurable logic, reconfiguration overheads, execution and write back of results. It is
important to note that such tools are highly dependent to the reconfigurable system
they were built to be used with.

Automated tools usually involve some complex graph analysis in order to find
the best alternatives for code transformation. To better illustrate this, let us consider
an example based on [24], demonstrated in Fig. 2.9. As it can be observed, the
sequence of instructions is organized in a DFG (Data Flow Graph). Some sequences
are merged together and transformed to a reconfigurable instruction.

These automated tools sometimes can also include another level of code transfor-
mations. These happen before code analysis, and are employed to better expose code
parallelism, using compiler techniques such as superblock [29] or hyperblock [31].

2.5.2 RU Coupling

How the reconfigurable logic is coupled, or connected to the main processor, defines
how the interface between both machines works, including issues related to how data
is transferred and how the synchronization between the parts is performed.

www.manaraa.com

26 2 Reconfigurable Systems

The position of the reconfigurable logic, relative to the microprocessor, directly
affects performance. The benefit obtained from executing a piece of code on it de-
pends on communication and execution costs. The time necessary to execute an
operation on the reconfigurable logic is the sum of the time needed to transfer the
processed data and the time required to process it. If this total time is smaller than
the time it would normally take in the standalone processor, then an improvement
can be obtained.

The reconfigurable logic can be allocated in three main places relative to the
processor:

• Attached to the processor: The reconfigurable logic communicates to the main
processor through a bus.

• Coprocessor: The reconfigurable logic is located next to the processor. The com-
munication is usually done using a protocol similar to those used for floating point
coprocessors.

• Functional Unit: The logic is placed inside the processor. It works as an ordinary
functional unit, having full access to the processor’s registers. Some part of the
processor (usually the decoder) is responsible to activate the reconfigurable logic,
when necessary.

Figure 2.10 illustrates these three different types of coupling. The two first in-
terconnection schemes are usually called loosely coupled. The functional unit ap-
proach, in turn, is named tightly coupled. As stated before, the efficiency of each
technique depends on two things: the time required to transfer data between the
components, where, in this case, the functional unit approach is the fastest one and
the attached processor, the slowest; and the quantity of instructions executed by the
reconfigurable logic. Usually, loosely coupled units can execute larger chunks of
code, and are faster than the tightly coupled ones, mainly because they have more
area available. For loosely coupled units, there is a need for faster execution times:
it is necessary to overcome some of the overhead brought by the high delays caused
by the data transfers. The data exchange is usually performed using shared memory,
while the communication can be done using shared memory or message passing.

Fig. 2.10 Different types of
RU coupling

www.manaraa.com

2.5 Reconfigurable Logic Classification 27

A tightly coupled RU, although increasing the area taken by the processor itself,
makes the control logic simpler. Besides, it minimizes the overhead required in the
communication between the reconfigurable array and the rest of the system, because
it can share some resources with the processor, such as the access to the register
bank, which is usually employed for the communication between the main processor
and the reconfigurable unit. On the other hand, the tightly coupled functional unit
must run fast enough in order to avoid increasing the processor’s cycle time, and
hence the amount of logic that can be packed is limited.

When there is a reconfigurable unit working as functional unit in the main proces-
sor, it is called a Reconfigurable Functional Unit, or RFU. The first reconfigurable
systems were implemented as co-processors, or as attached processors. However,
with the manufacturing advances and more transistors available within the same
die, the RFU based system is becoming a very common implementation.

2.5.3 Granularity

The granularity of a reconfigurable unit defines its level of data manipulation: the
smallest possible parts for reconfiguration (or building blocks) for fine-grained logic
are usually gates (efficient for bit level operations), while in coarse-grained RUs
these blocks are larger (like ALUs), therefore better suited for bit parallel operations.

A fine-grain reconfigurable system consists of Processing Elements (PEs) and
interconnections that are configured at bit-level. The PEs implement any 1-bit logic
function and vast interconnection resources are responsible for the communication
links between these PEs. Fine-grain systems provide high flexibility and can be used
to implement theoretically any digital circuit. They are usually implemented with or
based on FPGA. An example of an FPGA architecture is shown in Fig. 2.11. It
consists of a 2-D array of Configurable Logic Blocks (CLBs) used to implement
both combinational and sequential logics. Each CLB typically consists of a 4-input
lookup table (LUT) and a flip-flop. The lookup table is responsible for executing a
given logic operation, so it can implement any 1-bit logic function. Programmable
interconnects surround CLBs, ensuring the communication between them. These
interconnections can be either direct connections via programmable switches (e.g.,
pass transistors) or a mesh structure using Switch Boxes (S-Box), as illustrated in
the example. Finally, programmable I/O cells surround the array, for communication
with the external environment.

A coarse-grain reconfigurable system, in turn, consists of reconfigurable PEs that
implement word-level operations and special-purpose interconnections retaining
enough flexibility to map different applications onto the system. While bit-oriented
algorithms can take better benefit from fine-grained systems, the coarse-grain ap-
proach may be the best alternative for computation intensive applications. Coarse
grain architectures are implemented using off the shelf functional units, or yet spe-
cial functional units targeted to a given domain of application. The interconnection
resources are usually multiplexers, crossbars or buses. Figure 2.12 illustrates a sim-
ple reconfigurable array of functional units, connected to each other using crossbars.
The word length of this array is 16 bits long.

www.manaraa.com

28 2 Reconfigurable Systems

Fig. 2.11 A typical FPGA
architecture

Fig. 2.12 An example of a coarse grain reconfigurable array of functional units

www.manaraa.com

2.5 Reconfigurable Logic Classification 29

Granularity also affects the size of the configuration context and the configu-
ration time. With fine-grained logic, more information is needed to describe the
reconfigurable instruction. Coarse-grained logic descriptions are more compact, but
on the other hand, some operations can be limited due to its higher level of data
manipulation.

Another issue related to the granularity is the segment size. A segment is the
minimum hardware unit that can be configured and assigned to a reconfigurable in-
struction (which will be explained in the following sub-section). Segments allow
reconfigurable instructions to share the reconfigurable resources. If segments are
used, the configuration of the reconfigurable logic can be performed in a hierarchi-
cal manner. Each instruction is assigned to one or more segments, and inside those
segments, the processing elements are configured. The interconnect that connects
the elements inside a segment is referred to as intra-segment interconnect. Interseg-
ment interconnect is used to connect different segments.

2.5.4 Instruction Types

Reconfigurable instructions are those responsible for controlling the reconfigurable
hardware, as well as for the data transfer between it and the main processor. They
are usually identified by special opcodes in the processor instruction set. Which op-
eration a reconfigurable instruction will perform is usually specified using an extra
field in the instruction word. This field can give two different kinds of information:

• Address: The special field indicates the memory address of the configuration data.
• Instruction number: An instruction identifier of small length is embedded in the

instruction word. This identifier indexes a configuration table where some infor-
mation, such as the configuration data address, is stored. The number of reconfig-
urable instructions is limited to the size of the table.

The first approach needs more instruction word bits, but has the benefit that the
number of different instructions is not limited to the size of a table, as in the second
case. On the other hand, when using the configuration table approach, the table can
be changed on the fly, so the processor can more easily adapt to the task at hand at
runtime. However, specialized scheduling techniques have to be used during code
generation in order to configure what instructions will be available in the table at a
given moment, during program execution.

There are other issues concerning instructions in reconfigurable systems. For ex-
ample, the memory accesses performed by these instructions can be made by spe-
cialized load/store operations or implemented as stream based operations. If the
memory hierarchy supports several accesses at the same time, then the number of
memory ports can be greater than one. Moreover, the register file accessed by the
reconfigurable unit can be shared with other functional units or be dedicated (such
as the floating point register file in some architectures). The dedicated register file
would need less ports than if it was shared, becoming cheaper to be implemented.

www.manaraa.com

30 2 Reconfigurable Systems

The major drawback of a dedicated register file is that more control for synchroniza-
tions is necessary.

In the same way, reconfigurable instructions can be implemented as stream based
ones or customized. The first type can process large amounts of data in a sequential
or blocked manner. Only a particular set of applications can benefit from this type,
such as FIR filtering, discrete cosine transformation (DCT) or other signal process-
ing related algorithms. Custom instructions take small amounts of data at a time
(usually from internal registers) and produce another small amount of data. These
instructions can be used in almost all applications as they impose fewer restrictions
on the characteristics of the application. Example of these operations are bit re-
versal, multiply accumulate (MAC) etc. Instructions can also be classified in many
other ways, such as execution time, pipelining, internal state etc. For more details
on these classifications, refer to [25].

2.5.5 Reconfigurability

The logic can be programmed at different moments. If it can only be programmed at
startup, before execution begins, this unit is not reconfigurable (it is configurable).
If the logic can be programmed after initialization, then it is called reconfigurable.
The application can be divided in different blocks of functionality, so the RU can
be reconfigured according to the needs of each individual block. In this manner, the
program adaptation is done in a per block basis. The reconfigurable logic is simpler
to be implemented if the fabric is blocked during reconfiguration. However, if the
RU can be used while being reconfigured, it is possible to increase performance.
This can be done, for example, by dividing the RU in segments that can be config-
ured independently from each other. The process of reconfiguring just parts of the
logic is called partial reconfiguration [25].

Reconfiguration times depend on the size of the configuration data. The configu-
ration data is usually composed of the configuration bits for the unit reconfiguration,
as well as information about the input context. These times depend on the configu-
ration method used. For instance, in the PRISC processor [21], the RU is configured
by copying the configuration data directly into the configuration memory using nor-
mal load/store operations. If this task is performed by a configuration unit that is
able to fetch the configuration data while the processor is executing code, a perfor-
mance gain can be obtained. Hence, prefetching the configuration data can reduce
the time the processor is stalled waiting for reconfiguration. The employment of this
approach can be done automatically by software tools [32].

2.6 Directions

In this sub-section, some tradeoffs that should be taken into account while devel-
oping a reconfigurable architecture are analyzed. First, a known benchmark set is

www.manaraa.com

2.6 Directions 31

evaluated in order to figure what is the best strategy to take in terms of granular-
ity. Then, the impact of this analysis in both fine and coarse grain reconfigurable
systems performing high levels simulations is studied. Finally, other issues are con-
sidered, such as reconfiguration and execution times, and the growing number of
applications being executed at the same time on a system.

2.6.1 Heterogeneous Behavior of the Applications

In [23] a subset of the Mibench Benchmark Suite [26] is used, which repre-
sents a complete set of diverse algorithm behaviors. As a matter of fact, this
suite has been chosen because, according to [26], it has a larger range of differ-
ent behaviors when compared against other benchmark sets, e.g. SPEC2000 [28].
This way, the following 18 benchmarks were evaluated: Quicksort, Susan Cor-
ners/Edges/Smoothing, Jpeg Encoder/Decoder, Dijkstra, Patricia, StringSearch,
Rinjdael Encode/Decode, Sha, Raw Audio Coder/Decoder, GSM Coder/Decoder,
Bitcount and CRC32.

First, a characterization of the algorithms regarding the number of instructions
executed per branch is done (classifying them as control or dataflow oriented based
on these numbers). As it can be observed in Fig. 2.13, the RawAudio Decoder al-
gorithm is the most control flow oriented one (a high rate of executed branches)
while the Rijndael Encoder is quite the opposite, being data flow oriented. It is im-
portant to point out that, for reconfigurable architectures, the more instructions a
basic block has, the better, since there is more room for exploiting parallelism. Fur-
thermore, more branches mean additional paths that can be taken, increasing the
execution time and the area consumed by a given configuration, when implemented
in reconfigurable logic.

Fig. 2.13 Instruction per Branch Rate

www.manaraa.com

32 2 Reconfigurable Systems

Fig. 2.14 How many BBs are necessary to cover a certain amount of execution time?

Figure 2.14 shows the analysis of distinct kernels based on the execution rates
of the basic blocks in the programs. The methodology involves investigating the
number of basic blocks responsible for covering a certain percentage of the total

www.manaraa.com

2.6 Directions 33

number of basic block executed. For instance, in the CRC32 algorithm, just 3 basic
blocks are responsible for almost 100% of the total program execution time. Again,
for typical reconfigurable systems, this algorithm can be easily optimized: one just
needs to concentrate all the design effort on that specific group of basic blocks and
implement them to reconfigurable logic.

However, other algorithms, such as the widely used JPEG decoder, have no dis-
tinct execution kernels at all. In this algorithm, 50% of the total instructions executed
are due to 20 different BBs. Hence, if one wished to have a speedup factor of 2x,
according to Amdahl’s law, all 20 different basic blocks should be mapped into re-
configurable logic, and each should be accelerated by a factor of 4. This analysis
will be presented in more details in the next section.

The problem of not having a clear group of most executed kernels becomes even
more evident if one considers the wide range of applications that embedded systems
are implementing nowadays. In a scenario when an embedded system runs RawAu-
dio decoder, JPEG encoder/decoder, and StringSearch, the designer would have to
transform approximately 45 different basic blocks into the reconfigurable fabric to
achieve a maximum of 2 times performance improvement.

Furthermore, it is interesting to point out that the algorithms with a high number
of instructions per branch tend to be the ones that need fewer kernels to achieve
higher speedups. Figure 2.15 illustrates this scenario by using the cases with 1, 3
and 5 basic blocks. Note that, mainly when one considers only the most executed
basic blocks (first bar of each benchmark), the shape of the graph is very similar to
the instructions per branch ratios shown in Fig. 2.13 (with some exceptions, such
as the CRC32 or JPEG decoder algorithms). A deeper study about this issue could
be envisioned to indicate some directions regarding the reconfigurable arrays opti-
mization just based on very simple profile statistics.

Fig. 2.15 Amount of execution time covered by 1, 3 or 5 basic blocks in each application

www.manaraa.com

34 2 Reconfigurable Systems

2.6.2 Potential for Using Fine Grained Reconfigurable Arrays

In this section, the potentiality of fine grain reconfigurable arrays is evaluated. Con-
sidering hot spots as being loops or subroutines, the level of performance gains one
can obtain whenever a determined number of them is mapped to a fine grain re-
configurable logic is analyzed. In this first experiment, it is assumed that just one
piece of reconfigurable hardware is available per loop or subroutine. This means
that the only part of the code that will be optimized by the reconfigurable logic is
the one that is common to all iterations. For example, let us assume that a loop is ex-
ecuted 50 times. 100% of the code is executed 49 times, but only 20% is executed 50
times. This way, just this part will be optimized, since it comprises the common part
of code executed in all loop iterations. Figure 2.16 illustrates this case. Moreover,
subroutines called inside loops are not suited for optimization.

Figures 2.17a and b show, in the y-axis, the performance improvements (speedup
factor) when implementing a different amount of subroutines or loops (x-axis) on
reconfigurable logic, respectively. The hot spots are chosen in order of relevance,
where the first on the list is the most executed one (considering how many times it
is repeated and its number of instructions). It is assumed that the execution time for
each one of these hot spots would be of one cycle, when reconfigurable hardware
is used. Although extremely optimistic, this can give us an upper bound on the
execution time. As it can be observed, the performance gains demonstrated are very
heterogeneous. For a group of algorithms, just a small number of subroutines or
loops implemented on fine grain reconfigurable logic are necessary to show good
speedups. For others, the level of optimization is very low.

One of the reasons for the lack of optimization in some algorithms is the method-
ology used for code allocation on the reconfigurable logic, explained above. This
way, even if there is a huge number of hot spots subject to optimization, but present-
ing different dynamic behaviors, just a small number of instructions inside these hot
spots could be optimized. This shows that automatic tools, aimed at searching the
best parts of the software to be transformed to reconfigurable logic, might not be
enough to achieve the necessary gains, whenever heterogeneity on the application
set comes into play. Consequently, human interaction for changing and adapting
parts of the code is required, with obvious impact on design time costs and time-to-
market.

In the first experiment described above, besides considering infinite hardware
resources and no communication overhead between the processor and the reconfig-
urable logic, it has also been assumed an infinite number of memory ports with zero

Fig. 2.16 Just a small part of
the loop can be optimized

www.manaraa.com

2.6 Directions 35

Fig. 2.17 Performance gains considering different numbers of (a) subroutines and (b) loops being
executed in 1 cycle in reconfigurable logic

delay, which is practically infeasible for any relatively complex configuration. Now,
in Fig. 2.18, a more realistic assumption is considered: each hot spot would take 5
cycles to be executed on the reconfigurable logic. These extra cycles were added to
give a hint on the impact of limited memory ports. When comparing this experiment

www.manaraa.com

36 2 Reconfigurable Systems

Fig. 2.18 Performance gains, but now considering 5 cycles per hot spot execution. (a) Subroutines
and (b) loops

with the previous one, it can be observed that, although the algorithms that present
performance speedups are the same, the speedup levels varies a lot.

Figure 2.19 presents the same analysis, but considering more pessimistic assump-
tions. Now, each hot spot would take 20 cycles to be executed. Although usually a
reconfigurable unit would not take that long to compute one configuration, there are

www.manaraa.com

2.6 Directions 37

Fig. 2.19 Now considering 20 cycles per hot spot execution. (a) Subroutines and (b) loops

some exceptions, such as configurations with large code blocks, huge context sizes
or those that have massive memory accesses. In the same figure, one can observe
that some algorithms present even performance loss. This means that, depending on
the way the reconfigurable logic is implemented and how the communication be-
tween the GPP and RU is done, some hot spots may not be worth to be executed on
reconfigurable hardware.

Now, a different methodology is considered: it is assumed that enough reconfig-
urable hardware is available to support infinite configurations. This way, in opposite
to the previous methodology, entire loops or subroutines could be optimized, re-
gardless if all instructions inside them are executed in all iterations. Figure 2.20

www.manaraa.com

38 2 Reconfigurable Systems

Fig. 2.20 Different pieces of reconfigurable logic are used to speed up the entire loop

illustrates this assumption. A different configuration would be available for each
part of the code to be executed on reconfigurable hardware.

In the experiment presented in Figs. 2.21a and b, it is considered that the execu-
tion of each configuration would take 5 cycles. Comparing against Fig. 2.18 (same
experiment, but using the previous methodology), huge improvements are shown,
mainly when considering subroutine optimizations. This, in fact, reinforces the im-
portance of using totally or partially dynamic reconfigurable architectures, which
can adapt to the program behavior during execution. For instance, considering a
partially reconfigurable architecture executing a loop: the part of the code that is
always executed could remain in the reconfigurable unit during all the iterations,
while sequences of code that are executed in certain time intervals could be config-
ured when necessary.

2.6.3 Coarse Grain Reconfigurable Architectures

In this section, the potential of performance improvements considering that a coarse
grain array is employed is analyzed. In these experiments, let us consider that the
optimization will take place at the instruction level, and no speculative execution is
supported. Therefore, the optimization is limited to basic block boundaries. Conse-
quently, the level of optimization is directly proportional to the BBs execution rate
(Fig. 2.14). For a determined basic block, the more it is executed, more performance
boosts it represents for the overall acceleration.

Assuming that one configuration takes just one cycle to be executed, let us com-
pare the instruction level optimization (representing the coarse grain architecture)
against the subroutine level (representing the fine grain), which had previously
shown more performance improvements than the loop level. When comparing the
results in Fig. 2.22a to the ones in Fig. 2.17, one can observe that, for some algo-
rithms, no matter how many basic blocks are optimized, the level of optimization
will not reach the ones presented when executing only one subroutine in a fine grain

www.manaraa.com

2.6 Directions 39

Fig. 2.21 Infinite configurations available for (a) subroutine optimization: each one would take 5
cycles to be executed. (b) The same, considering loops

system. However, for others, mainly the most complex ones, the level of optimiza-
tion is almost the same for basic blocks or subroutines (they can be observed at the
bottom of the figure). In the later case, using the instruction level optimization would
be the best choice: it is easier and cheaper to implement 10 different configurations
in coarse grain logic than 10 in a fine grain system, since much less connections and
reconfigurable gates will be involved, with much less control circuits and associated
delays.

www.manaraa.com

40 2 Reconfigurable Systems

Fig. 2.22 Optimization at instruction-level with the basic block as limit. (a) 1 cycle, (b) 5 cycles,
(c) 20 cycles per BB execution

www.manaraa.com

2.6 Directions 41

When assuming that each configuration would take 5 cycles to be executed, there
is a tradeoff between execution time and how complex the basic blocks are (in num-
ber of instructions, kind of operations, memory accesses etc.). This assumption is
demonstrated in Fig. 2.22b: in the Rinjdael algorithms, the use of a coarse grain
system is worth until a certain number of basic blocks being implemented on re-
configurable logic is reached. After that, there is performance loss. Considering 20
cycles per basic block execution (Fig. 2.22c), this situation becomes more evident.
This shows that, as for fine grain reconfigurable architectures, there is a necessity
of small reconfiguration and context loading times. These are easier to be achieved
in coarse grain architectures though, since the size of each configuration is usually
much smaller than fine grain ones.

Even though this coarse grain reconfigurable array does not demonstrate the same
level of performance gains as fine grain reconfigurable systems show, more and
different configurations would be available to be executed on this kind of system,
considering that the memory size for keeping contexts would be smaller. In this case,
the chances of optimization for applications that do not have very distinct kernels
would increase when comparing against fine grain systems.

2.6.4 Comparing Both Granularities

Considering fixed applications, or data stream based ones, or yet those with long
lifetime periods such as an MP3 player, fine grain reconfigurable systems may be
a good choice. Some algorithms present huge potential for performance improve-
ments, such as CRC32, SHA or Dijkstra. Only a small number of hot spots has to
be optimized in these examples for them to present good acceleration results. This
strategy, however, usually requires long development times, since a translation from
the software code to a hardware description language amenable to synthesis must
take place. Moreover, although there are tools that try to ease this task [33], their
efficiency is quite limited, and several design iterations with human intervention are
necessary.

Furthermore, it is important to point out a new industry trend: the number of
different applications being executed on the systems is increasing and getting more
heterogeneous. Considering the embedded systems field, some of the applications
are not as datastream oriented as they used to be in the past. Applications with
mixed (control and data flow) or pure control flow behaviors, where sometimes no
distinct kernel for optimization can be found, are gaining popularity. Hence, for
each application, different optimizations would be required. This, in consequence,
would lead to an increase in the design cycle, since mapping code to reconfigurable
logic usually involves some transformation, manual or using special languages or
tool chains. The solution would be the employment of simpler coarse grain based
reconfigurable architectures, even if they do not bring as much improvement as the
fine grained approaches show.

www.manaraa.com

42 2 Reconfigurable Systems

The authors in [37] advocate in favor of coarse grain architectures. According
to the authors, there are some reasons about why one should employ a coarse grain
reconfigurable system, as follows:

• Small configuration contexts: Coarse grain reconfigurable units need few config-
uration bits, which are order of magnitude less than those required if FPGAs were
used to implement the same operations. In the same way, a small amount of bits is
necessary to establish the interconnections among the basic processing elements
of coarse grain structures, since the interconnection wires are also configured at
word level.

• Reduced reconfiguration time: Due to the previous statement, the reconfiguration
time is reduced. This permits coarse-grain reconfigurable systems to be used in
applications that demand multiple reconfigurations, even at run-time.

• Reduced context memory size: Being also a consequence of the first statement, the
context memory size is also reduced. This allows the use of on-chips memories,
which permits switching from one configuration to another with low configura-
tion overhead.

• High performance and low power consumption: This stems from the hardwired
implementation of coarse grained units and the optimal design of interconnections
for the target domain.

• Silicon area efficiency and reduced routing overhead: Coarse grained units are
optimally-designed hardwired units that are not built by combing a number of
CLBs and interconnection wires, resulting in reduced routing overhead and better
area utilization.

In contrast, according to the same authors, these are the main disadvantages of
using a fine grain reconfigurable array such as the ones based on FPGA:

• Low performance and high power consumption: This happens mainly because
word level modules need to be built by connecting a number of CLBs using a
large number of programmable switches.

• Large context and configuration time: The configuration of CLBs and inter-
connections between them are performed at bit-level. This results in a large
configuration context that has to be downloaded from the context memory, in-
creasing configuration time, which may degrade performance when multiple and
frequently-occurred reconfigurations are required.

• Large context memory: As a consequence of the previous statement, large recon-
figuration contexts are produced, demanding a large context memory. Because of
that, in many times the reconfiguration contexts are stored in external memories
increasing even more the time and power necessary for reconfiguration.

• Huge routing overhead and poor area utilization: To build a word-level unit or
datapath, a large number of CLBs must be interconnected, resulting in huge rout-
ing overhead and poor area utilization. In many times a great number of CLBs
are used only for routing purposes and not for performing logic operations.

However, still according to the authors in [37], the development of universal
coarse-grain architecture to be used in any application is an “unrealistic goal”. This

www.manaraa.com

References 43

statement comes mainly from the fact that it is very hard to adapt the reconfigurable
unit for a great number of different kernels, since the optimization is usually done
at compile time. This way, even coarse grained architectures would be restricted to
a specific domain. However, as it will be shown in the sequel, there are actually
examples of reconfigurable accelerators that show excellent performance under a
dynamic environment to optimize different kernels.

References

21. Athanas, P.M., Silverman, H.F.: Processor reconfiguration through instruction-set metamor-
phosis. Computer 26(3), 11–18 (1993). doi:10.1109/2.204677

22. Barat, F., Lauwereins, R.: Reconfigurable instruction set processors: A survey. In: RSP’00:
Proceedings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP
2000), p. 168. IEEE Computer Society, Los Alamitos (2000)

23. Beck, A.C., Rutzig, M.B., Gaydadjiev, G., Carro, L.: Run-time adaptable architectures for
heterogeneous behavior embedded systems. In: ARC’08: Proceedings of the 4th International
Workshop on Reconfigurable Computing, pp. 111–124. Springer, Berlin/Heidelberg (2008)

24. Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K.: Application-specific processing on
a general-purpose core via transparent instruction set customization. In: MICRO 37: Proceed-
ings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 30–
40. IEEE Computer Society, Los Alamitos (2004). doi:10.1109/MICRO.2004.5

25. Compton, K., Hauck, S.: Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. 34(2), 171–210 (2002). doi:10.1145/508352.508353

26. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:
a free, commercially representative embedded benchmark suite. In: WWC’01: Proceedings of
the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop, pp. 3–14.
IEEE Computer Society, Los Alamitos (2001). doi:10.1109/WWC.2001.15

27. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn.
Morgan Kaufmann, San Mateo (2006)

28. Henning, J.L.: Spec cpu2000: Measuring cpu performance in the new millennium. Computer
33(7), 28–35 (2000). doi:10.1109/2.869367

29. Hwu, W.M.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Quel-
lette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery, D.M.: The superblock:
an effective technique for vliw and superscalar compilation. In: Instruction-level Parallel Pro-
cessors, pp. 234–253 (1995)

30. Jain, M.K., Balakrishnan, M., Kumar, A.: Asip design methodologies: Survey and issues. In:
VLSID’01: Proceedings of the 14th International Conference on VLSI Design (VLSID’01),
p. 76. IEEE Computer Society, Los Alamitos (2001)

31. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective compiler sup-
port for predicated execution using the hyperblock. In: MICRO 25: Proceedings of the 25th
Annual International Symposium on Microarchitecture, pp. 45–54. IEEE Computer Society,
Los Alamitos (1992). doi:10.1145/144953.144998

32. Panainte, E.M., Bertels, K., Vassiliadis, S.: The Molen compiler for reconfigurable processors.
ACM Trans. Embed. Comput. Syst. 6(1), 6 (2007). doi:10.1145/1210268.1210274

33. Patel, S.J., Lumetta, S.S.: Replay: A hardware framework for dynamic optimization. IEEE
Trans. Comput. 50(6), 590–608 (2001). doi:10.1109/12.931895

34. Sima, D.: Decisive aspects in the evolution of microprocessors. Proc. IEEE 92(12), 1896–1926
(2004)

35. Singh, H., Lee, M.H., Lu, G., Bagherzadeh, N., Kurdahi, F.J., Filho, E.M.C.: Morphosys:
An integrated reconfigurable system for data-parallel and computation-intensive applications.
IEEE Trans. Comput. 49(5), 465–481 (2000). doi:10.1109/12.859540

http://dx.doi.org/10.1109/2.204677
http://dx.doi.org/10.1109/MICRO.2004.5
http://dx.doi.org/10.1145/508352.508353
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/2.869367
http://dx.doi.org/10.1145/144953.144998
http://dx.doi.org/10.1145/1210268.1210274
http://dx.doi.org/10.1109/12.931895
http://dx.doi.org/10.1109/12.859540

www.manaraa.com

44 2 Reconfigurable Systems

36. Smith, M.J.S.: Application-Specific Integrated Circuits. Addison-Wesley, Reading (2008)
37. Theodoridis, G., Soudris, D., Vassiliadis, S.: A survey of coarse-grain reconfigurable archi-

tectures and cad tools. In: Fine- and Coarse-Grain Reconfigurable Computing, pp. 89–149.
Springer, Dordrecht (2007). http://www.springerlink.com/content/j118u3m6m225q264/

http://www.springerlink.com/content/j118u3m6m225q264/

www.manaraa.com

Chapter 3
Deployment of Reconfigurable Systems

Abstract Following the discussion on reconfigurable systems, this chapter is ded-
icated to show several and different examples of architectures that have been used
both in the academy and in the industry. They are presented according to the classi-
fication studied in the previous chapter. Also, a brief discussion on recent dataflow
machines is done, since their structure is very similar to some of the reviewed re-
configurable systems. After that, one can find comparative tables summarizing the
previously studied information. Then, an overview of the characteristics of the em-
ployed benchmark sets shows that all those proposed reconfigurable architectures
fail on the very same and important aspect: they cannot cope with a large range
of different applications in the same device, nor can they sustain binary compati-
bility. Therefore, it is made clear that some sort of dynamic optimization is neces-
sary.

3.1 Introduction

In this chapter, some of the most known reconfigurable systems are presented. Each
description is divided in sub-sections, based on the classification previously pre-
sented. A special sub-section is added, briefly discussing how the given architecture
was evaluated and tested, which benchmark was used and presenting results regard-
ing area and performance, when available. In the end of this chapter, a table sum-
marizing the characteristics of reconfigurable systems is presented, as well as an
analysis on the behavior of the employed benchmarks. In addition, there is a section
briefly discussing recent dataflow architectures, since they are very similar to some
of the reconfigurable architectures found nowadays. Even though there are recent
surveys about the theme, both on coarse [61, 95] and fine grain [92] systems, they
do not provide the comparison on different characteristics here presented.

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_3, © Springer Science+Business Media B.V. 2010

45

http://dx.doi.org/10.1007/978-90-481-3913-2_3

www.manaraa.com

46 3 Deployment of Reconfigurable Systems

3.2 Examples of Reconfigurable Architectures

3.2.1 Chimaera

The Chimaera system [63, 64] was created with the claim that the custom comput-
ing units available at that time used to suffer with communication delays. Therefore,
large chunks of the application code should be optimized to achieve reasonable per-
formance improvements, so that one could compensate for the extra communication
time.

3.2.1.1 RU Coupling

In order to decrease communication time, this was one of the first proposals of
a reconfigurable system that actually works together with the host processor, as a
tightly coupled unit, with direct access to its register file.

3.2.1.2 Reconfigurable System and Granularity

The main component of the system is the reconfigurable array, which consists of
FPGA-like logic designed to support high-performance computations. Hence, its
granularity is fine. The array is given direct read access to a subset of the registers
in the processor (either by adding read connections to the host’s register file, or by
creating a shadow register file which contains copies of the values of those registers).
The array is coupled to a MIPS R4000 processor. In the employed FPGA there are
no state holding elements (such as flip-flops or latches) or pipeline stages inside it,
making it totally combinational. The Chimaera system is illustrated in Fig. 3.1.

Fig. 3.1 Organization of the Chimaera system

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 47

Fig. 3.2 Structure of the
Chimaera reconfigurable
array

The RU is divided in blocks (one is illustrated in Fig. 3.2). These blocks are
connected to each other using multiplexers reassembling the behavior of a cross-
bar. There are also special lines to connect blocks that are distant to each other.
Each block is composed of register ports and a set of LUTs (one 4-input LUT, two
3-input LUTs or one 3-input LUT with a carry). The routing mechanism was also
modified to allow partial reconfiguration at faster speeds. Another interesting aspect
of this architecture is the downward flow of information and computation through
the reconfigurable array. There is no way to send signals back to a higher row in the
system, since the array behaves in a combinational-like fashion, without a feedback
path.

3.2.1.3 Instruction Type, Reconfiguration and Execution

As part of the tasks of the host processor’s decode logic, it should be determined
whether the current instruction is a RFUOP opcode (name given to a reconfigurable
instruction in the Chimaera). If that is true, a mechanism configures the RFU to pro-
duce the next result. In order to use the RFU, the application code includes calls to
the RFU (using special instructions), and the corresponding RFU mappings are con-
tained in the instruction segment of that application. Moreover, the system supports
more than one instruction in the reconfigurable unit at the same time. Chimaera
treats the reconfigurable logic not as a fixed resource, but rather as a cache for re-
configurable instructions. Instructions that have recently been executed, or those it
can otherwise predict might be needed soon, are kept in the reconfigurable logic. If
another instruction must be sent to the RFU, it needs to overwrite one or more cur-
rently loaded instructions. Consequently, it can be stated that the system supports
partial reconfiguration.

www.manaraa.com

48 3 Deployment of Reconfigurable Systems

The RFU call consists of the RFUOP opcode, indicating that an RFU instruction
is being called, an ID operand that determines which specific instruction should be
executed, and the destination register operand. The information from which registers
an RFU configuration reads its operands is intrinsic in the instruction. A single RFU
instruction can use up to nine different operands. If that instruction is already present
(meaning that it is already programmed, or configured) in the RFU, the result of
that instruction is written to the destination register during the instruction’s write
back cycle. In this way, the RFU calls act just like any other instruction, fitting
into the processor’s standard execution pipeline. If the requested instruction is not
currently loaded into the RFU, the host processor is stalled while the RFU fetches
the reconfigurable instruction from memory and properly reconfigures itself.

The Content Addressable Memory (CAM) of Fig. 3.1 determines which recon-
figurable instructions are loaded in the array, where they are, and whether they are
completed or not. When a RFUOP is found, and if the value in the CAM matches
the RFUOP ID, the result from that row in the reconfigurable array is written onto
the result bus, and then sent back to the register file, considering that the compu-
tation is done. If the instruction corresponding to the RFUOP ID is not present,
the Caching/Prefetch control logic stalls the processor, and loads the proper RFU
instruction from memory into the array. The caching logic also determines which
parts of the reconfigurable array are overwritten by the instruction being loaded,
and attempts to retain those RFU instructions most likely to be needed in the near
future. Reconfiguration is done on a per-row basis, with one or more rows making
up a given RFU instruction.

3.2.1.4 Code Analysis and Transformation

A C compiler, built over the GCC framework, was developed to transform groups of
instructions to RFUOPs. It works by extracting subgraphs from a generated DFG,
composed of instructions that can be executed in the array.

3.2.1.5 Evaluation

The system was evaluated with several benchmarks. In [63] it was reported that
three different algorithms were used for the system validation: Compress/SPEC92,
with a speedup of 1.11; Eqntott/SPEC92, presenting a speedup of 1.8; and Conway’s
Game of Life. By simply replacing the kernels with RFU instructions, it is possible
to get a speedup of 2.06. With manual modifications via careful hand mapping of
bit parallel optimization opportunities, a speedup of 160 times was achieved.

In [105], some applications of MediaBench [70] were evaluated: MPEG Encoder,
G.721 encoder and decoder, ADPCM compression and decompression, Pegwit
(public key encryption), as well as applications taken from the Honeywell bench-
mark: image compression and decompression. In [64], besides the ones cited above,
other applications were also tested: DES encryption/decryption, Simple Gaussian
Blur, RGB-Scale Conversion, RC5 encryption, Skeletonization Algorithm, DNA
String Comparison and Compress.

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 49

3.2.2 GARP

3.2.2.1 RU Coupling

The GARP machine is a reconfigurable system attached to a MIPS II instruction set
processor [46, 65] as a co-processor, so it can be classified as a loosely couple RU.

3.2.2.2 Granularity

The GARP system uses FPGA technology for the reconfigurable logic, so it is a fine
grain reconfigurable array. However, because of that, it is necessary to overcome
some obstacles, such as (according to the authors) [65]:

• It is claimed that FPGAs are rarely large enough to encode entire useful pro-
grams all at once. Consequently, smaller configurations handling different pieces
of a program should be swapped in over time. However, the time needed for the
swapping would be too expensive for any configuration to be used only briefly
and discarded soon after. In real programs, several parts of code are not repeated
often enough to be worth loading and executing into an FPGA.

• No circuit implemented with an FPGA can be as efficient as the same circuit in
dedicated hardware. When compared to their counterparts in ordinary processors,
standard functions like multiplications and floating-point operations are big and
slow in an FPGA.

• Problems that are worth solving with FPGAs usually involve more data than can
be kept in the FPGAs themselves. Furthermore, there is no standard model re-
garding the attachment of external memory to FPGAs. FPGA-based machines
typically include ad hoc memory systems, designed specifically for the first ap-
plication envisaged for the machine.

• Wide acceptance in the marketplace requires binary compatibility among a range
of implementations. The current crop of FPGAs, on the other hand, must be re-
programmed for each new chip version, even within the same FPGA family.

3.2.2.3 Reconfigurable System

Garp’s reconfigurable array is composed of entities called blocks (Fig. 3.3). One
block in each row is a control block. The rest of the blocks in the array are logic
blocks, which roughly correspond to the CLBs of the Xilinx 4000 series [76].

Considering the example given in [65], the Garp architecture fixes the number
of column blocks at 24. The number of rows is implementation-specific, but can be
expected to be at least 32. The basic quantum of data within the array is 2 bits. Logic
blocks operate on values as 2-bit units, and all wires are arranged in pairs to transmit
2-bit quantities. This way, operations on 32-bit quantities generally require 16 logic
blocks. Compared to typical FPGAs, Garp expends more hardware on accelerating

www.manaraa.com

50 3 Deployment of Reconfigurable Systems

Fig. 3.3 A block of the GARP machine

operations like adds and variable shifts. The decision to make everything 2 bits wide
is based on the assumption that a large fraction of most configurations will be taken
up by multi-bit operations that are configured identically for each bit. By pairing up
the bits, the size of configurations, the time required to load configurations, and the
space taken up on the die to store them, are all reduced, at the cost of some loss of
flexibility.

Rather than specify component delays as precise times that would change with
each processor generation, delays in Garp are defined in terms of the sequences that
can be fit within each array clock cycle. Only three sequences are allowed:

• short wire, simple function, short wire, simple function;
• long wire, any function not using the carry chain; or
• short wire, any function.

3.2.2.4 Instruction Type, Reconfiguration and Execution

With GARP, the loading and execution of configurations in the reconfigurable array
is always under the control of a program running on the main processor. Several in-
structions have been added to the MIPS-II instruction set for this purpose, including
ones for loading configurations, for copying data between the array and the proces-
sor registers, for manipulating the array, and for saving and restoring array state on
context switches. The Garp reconfigurable hardware has direct access to the main
memory system.

The use of the RU in Garp typically involves the following steps:

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 51

1. Load a configuration. This configuration can be found in a special cache designed
particularly for holding the most used ones. If this is the case, this step would take
a short time to be completed.

2. Copy the input data from the register bank to the reconfigurable array with the
coprocessor move instructions.

3. Starts execution and wait until it is done.
4. After that, copy final results back to the register bank.

Each block in the array requires exactly 64 configuration bits (8 bytes) to specify
the sources of inputs, the function of the block, and the wires driven with outputs.
No configuration bits are needed for the array wires. A configuration of 32 rows
requires approximately 6 KB. Assuming a 128-bit path to external memory, loading
a full 32-row configuration takes 384 sequential memory accesses. At that time, a
typical processor external bus might need 50 µs to complete the load.

Since not all useful configurations require the entire resources of the array, Garp
allows partial array configurations. The smallest configuration is one row, and every
configuration must fill exactly some number of contiguous rows. Two configurations
can never be active at the same time, no matter how many array rows might be left
unused by a small configuration.

3.2.2.5 Code Analysis and Transformation

The reconfigurable instructions are hand-coded and statically scheduled. A modified
GCC-like design flow is used, using a pseudo language bonded together with the
assembly generated from a C source.

3.2.2.6 Evaluation

Simulations were performed in order to gather results for Garp, since at that time
no actual hardware implementation existed. It was compared against a Sun Ultra-
SPARC 1/170, a 4-way superscalar 64-bit processor with 16 kB each of on-chip
instruction and data caches. Performance estimates can be observed in Table 3.1.
In Fig. 3.4 one can observe the area estimates of a hypothetical implementation
in hardware of this reconfigurable system. It would be implemented in a 0.5 µm,
4-metal-layer process in a die size of 17.5 × 17.8 mm2. It is also compared with the
same UltraSPARC (Fig. 3.5).

Table 3.1 Performance estimates for GARP machine, compared to the SPARC [46]

www.manaraa.com

52 3 Deployment of Reconfigurable Systems

Fig. 3.4 Area estimates for
the GARP System [65]

Fig. 3.5 Area estimates for
the Ultrasparc processor [65]

3.2.3 REMARC

REMARC comes from “Reconfigurable Multimedia Array Coprocessor” [82, 83]. It
is a reconfigurable unit, coupled to a MIPS II ISA based RISC machine. As the name
states, REMARC was specifically designed to speed up multimedia applications.

3.2.3.1 RU Coupling

The MIPS ISA can support up to four coprocessors. In this case, coprocessor 0
is already used for memory management and exception handling, coprocessor 1 is
used for a floating point unit. Then, REMARC operates as coprocessor 2. REMARC
is a loosely coupled reconfigurable architecture.

3.2.3.2 Reconfigurable System and Granularity

A coarse grain reconfigurable system was employed, because, according to the au-
thors [83], fine grain FPGA based reconfigurable architectures have the following
drawbacks:

• The small width of the programmable logic blocks results in large area and delay
overheads to implement wider datapaths, such as 8 or 16 bits long.

• FPGAs are slower when compared to a custom integrated circuit and have lower
logic density.

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 53

Fig. 3.6 General overview of
the REMARC reconfigurable
system

REMARC consists of an 8 × 8 array of nano processors and a global control
unit. A nano processor can communicate to the four adjacent ones through dedicated
connections and to the processors in the same row and the same column through the
32-bit Horizontal Bus (HBUS) and the 32-bit Vertical Bus (VBUS), respectively.
A general overview of the system can be observed in Fig. 3.6. The global control
unit is responsible for controlling the execution of the nano processors (the commu-
nication is done using the VBUSes) as well as for the data transfer between them
and the GPP.

The nano processor consists of a 32-entry instruction RAM, a 16-bit ALU, a
16-bit entry data RAM, an instruction register (IR), eight 16-bit data registers (DR),
four 16-bit data input registers (DIR), and a 16-bit data output register (DOR). The
DOR registers are used to receive data from the four adjacent nano processors (up,
down, left, and right) through dedicated connections (DINU, DIND, DINL, and
DINR). The DOR register data can also be used as source data for ALU operations
or data inputs of a DIR register. These local connections provide high bandwidth
pathways within the processor array. The 16-bit ALU can execute 30 different in-
structions. The nano processor is demonstrated in Fig. 3.7. Taking advantage of the
availability of SIMD instructions in multimedia applications, one instruction can be
used for the whole set of nano processors that belong to a column or to a row.

www.manaraa.com

54 3 Deployment of Reconfigurable Systems

Fig. 3.7 One nano processor
in the REMARC system [83]

3.2.3.3 Instruction Type, Reconfiguration and Execution

The nano processors do not have Program Counters (PCs) by themselves. The global
control unit generates the PC value (nano PC) for all nano processors every cycle.
All nano processors use the same nano PC and execute the instruction indexed by it.
However, each nano processor has its own nano instruction RAM. Therefore, each
nano processor can operate differently according to the nano instructions stored in
this local RAM. This makes it possible to achieve a limited form of Multiple Instruc-
tion Stream, Multiple Data Stream (MIMD) operation in the processor array. At this
point, according to the authors, REMARC can be regarded as a VLIW processor in
which each instruction consists of 64 operations.

As already stated before, the global control unit controls the nano processors and
the transfer of data between them and the main processor. It includes a 1024-entry
instruction RAM (global instruction RAM), data registers, and control registers.
These registers can be accessed by the main processor directly with the following
instructions: move from/to coprocessor or load/store from/to coprocessor. More-
over, the GPP has the role of controlling the RU. GPP loads the operators, starts RU
execution and writes back the results. The MIPS ISA was extended to support such
instructions.

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 55

3.2.3.4 Code Analysis and Transformation

The reconfigurable instructions are programmed in the special REMARC assembly
language, and can be added to a regular C code using GCC.

3.2.3.5 Evaluation

Remarc executes MPEG2 decoding, optimizing two kernels: IDCT and MC. It also
executes MPEG2 encoding and DES. A high-level simulation of the system demon-
strated speedups ranging from a factor of 2.3 to 21.2 in the aforementioned applica-
tions.

3.2.4 Rapid

The goal of RaPiD [52, 53, 56] was to compile regular computations like those found
in DSP applications into both an application-specific datapath, and the program for
controlling that datapath.

3.2.4.1 RU Coupling, Reconfigurable System and Granularity

RaPiD is a standalone (no GPP works together with it), coarse-grain architecture
that allows dynamic construction of deeply pipelined computational datapaths from
a mix of ALUs, multipliers, registers and local memories. The ALUs perform the
usual logical and arithmetic operations on signed or unsigned fixed-point 16-bit
data. A general overview of RaPiD-I system is shown in Fig. 3.8. RaPiD is com-
posed only of a configurable datapath and a sequencer. This way, the reconfigurable
datapath is responsible for executing the whole program.

The datapath is shown in more details in Fig. 3.9. As can be observed, the com-
ponents of the datapath are arranged logically in a linear array. The functional units

Fig. 3.8 RaPiD-I system [53]

www.manaraa.com

56 3 Deployment of Reconfigurable Systems

Fig. 3.9 RaPiD-I cell [53]

are interconnected using a set of ten segmented buses that run the length of the
datapath. Each input of the functional units is attached to a multiplexer that is con-
figured to select one of the buses. The output of each functional unit is attached
to a demultiplexer comprised of tristate drivers, driving the signals to one of the
buses. Each output driver can be configured independently, which allows an output
to fan out to several buses, or none at all if the functional unit is not being used. As
case-study, an array was developed [52]. It was comprised of 16 cells, each contain-
ing one multiplier/shifter, three embedded memories (used for temporary variables,
constant tables etc.), three ALUs and six registers.

3.2.4.2 Instruction Type, Reconfiguration and Execution

RaPiD is programmed for a particular application by first mapping the computation
onto a datapath pipeline. The control signals are divided into static control signals
(also called hard control) provided by the configuration memory, and dynamic con-
trol (soft control) which must be provided on every cycle. The static programming
bits are used to construct the datapath structure, while the dynamic programming
bits are used to schedule the operations of the computation onto the datapath over
time. The controller is programmed to generate the information needed to produce
the dynamic programming bits.

3.2.4.3 Code Analysis and Transformation

Programs for the RaPiD architecture are written in a modified C-like language,
called RaPiD-C, which is an explicit data parallel language. The compiler is re-
sponsible for analyzing RaPiD-C programs to deliver the static datapath circuit, as
well as to generate the dynamic control signals.

3.2.4.4 Evaluation

In [53] RaPiD executes two algorithms: FIR filter and Matrix multiply. A perfor-
mance of up to 1.6 billion of operations per second was achieved. In [57], a Multiple-
Antenna OFDM (Orthogonal frequency-division multiplexing) Application was de-
veloped and prototyped in FPGA using the RaPiD system.

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 57

3.2.5 Piperench (1999)

The main novelty of Piperench [51, 54, 59, 60] was the so-called “pipelined recon-
figuration”. It means that a given kernel is broken into pieces, and these pieces can
be reconfigured and executed on demand. This way, the parts of a given kernel are
multiplexed in time and space into the reconfigurable logic. This process, called
virtualization, will be better explained next.

3.2.5.1 RU Coupling

In its current implementation, PipeRench can be classified as an attached processor,
being loosely coupled.

3.2.5.2 Reconfigurable System and Granularity

Piperench is a coarse grain array. It interesting to repeat some of the reasons that
motivated the authors to build this architecture without using an FPGA:

• Logic granularity: It is claimed that FPGAs are designed for logic replacement.
The granularity of the functional units is optimized to replace random logic, not
to perform multimedia computations.

• Configuration time: The time to load a configuration in the fabric ranges from
hundreds of microseconds to hundreds of milliseconds. For FPGAs to improve
processing speed over that of a general-purpose processor, they must amortize
this start-up latency over huge data sets, limiting their applicability.

• Forward compatibility: FPGAs require redesign or recompilation to benefit from
future chip generations.

• Hard constraints: FPGAs can implement only kernels of a fixed and relatively
small size. This size restriction makes compilation difficult and causes large, un-
predictable discontinuities between kernel size and performance.

• Compilation time: A kernel’s synthesis, placement, and routing design phases
take hundreds of seconds, taking longer than the compilation of the same kernel
for a general-purpose processor.

Figure 3.10 presents a general overview of the PipeRench architecture. A set
of physical pipeline stages are called stripes. Each stripe has an interconnection
network and a set of Processing Elements (PEs).

In Fig. 3.11 one can observe a more detailed view of a PE. Each PE contains an
arithmetic logic unit and a pass register file. Each ALU in the PE contains lookup
tables (LUTs) and extra circuitry for carry chains, zero detection, and so on. De-
signers can implement combinational logic using a set of NB-bit-wide ALUs. They
can also cascade the carry lines of these ALUs to construct wider ALUs by chain-
ing them together via the interconnection network, so it is possible to build complex
combinational functions.

www.manaraa.com

58 3 Deployment of Reconfigurable Systems

Fig. 3.10 General overview of the Piperench structure

Fig. 3.11 Detailed view of the Process Element and its connections

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 59

Through the interconnection network, PEs can access operands from registered
outputs of the previous stripe, as well as registered or unregistered outputs of the
other PEs in the same stripe. The pass register file provides a pipelined interconnec-
tion from a PE in one stripe to the corresponding PE in subsequent stripes. A pro-
gram can write the ALU’s output to any of the P registers in the pass register file.
If the ALU does not write to a particular register, that register’s value will come
from the value in the previous stripe’s corresponding pass register. For data values
to move laterally within a stripe, they must use the interconnection network. In each
stripe, the interconnection network accepts inputs from each PE in that stripe, plus
one of the register values from the previous stripe. Moreover, a barrel shifter in
each PE shifts its inputs B − 1 bits to the left. Thus, PipeRench can handle the data
alignments necessary for word-based arithmetic. The PEs can also access global I/O
buses. These buses are necessary because an application’s pipeline stages may phys-
ically reside in any of the fabric’s stripes. Inputs to and outputs from the application
must use a global bus to get to their destination. Because of hardware virtualization
constraints, the buses cannot be used to connect consecutive stripes.

3.2.5.3 Instruction Type, Reconfiguration and Execution

The basic Piperench principles of reconfiguration and execution are based on the
virtualization process. Figure 3.12 illustrates how virtualization works. In the upper
part of this same figure (Fig. 3.12a), it is demonstrated an application which was
divided in 5 different pipeline stages, taking the total of 8 cycles to be configured

Fig. 3.12 The virtualization
process, technique used by
Piperench. (a) Normal
execution. (b) With
virtualization

www.manaraa.com

60 3 Deployment of Reconfigurable Systems

and executed (each stage can be configured and used independently of each other),
representing the regular operation. Figure 3.12b shows how this application can fit
in the reconfigurable hardware after virtualization: just 3 stages of the equivalent
pipeline stages presented before are necessary. The pipeline stages are reconfigured
on demand, according to the kernel needs. Note that the virtual stage 1 is used to
execute the equivalent of stages 1 and 4 of the original operation. This is feasible
because it is done in different periods of time. Since some stages are configured
while others are executed, partial reconfiguration does not decrease performance.
Consequently, it is possible to execute the same piece of software taking the same
time, but with a smaller area overhead. The ALU operation is static during the time
a particular virtual stripe resides in a physical stripe.

3.2.5.4 Code Analysis and Transformation

The process of code generation uses a parameterized compiler. The compiler begins
by reading a description of the architecture. This description includes the number
of PEs per stripe, each PE’s bit width, the number of pass registers per PE, the
interconnection topology, PE delay characteristics, and so on. The source language
is a dataflow intermediate language. After parsing, the compiler inlines all modules,
performs loop unrolling, and generates the program.

3.2.5.5 Evaluation

To evaluate PipeRench’s performance, the authors have chosen the following bench-
marks: ATR, Cordic, DCT, DCT-2D, FIR, IDEA, Nqueens, Over, PopCount. Results
for the Piperench system can be seen in Table 3.2. It shows the performance im-
provements of the 100 MHz Piperench, built as a 128-bit-wide fabric having 8-bits
PEs with 8 registers each, over a 300 MHz Ultrasparc II.

Table 3.2 Performance
improvements over a
300-MHz Ultrasparc II

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 61

Fig. 3.13 A general overview of the Molen System

3.2.6 Molen

3.2.6.1 RU Coupling, Reconfigurable System and Granularity

The Molen processor [98, 99] is a reconfigurable system based on an FPGA with
a loosely coupled reconfigurable array. The two main components in the Molen or-
ganization are depicted in Fig. 3.13. More precisely, they are the Core Processor,
which is a GPP, and the Reconfigurable Unit (RU). The Arbiter issues instructions
to both processors; and data transfers are controlled by the Memory MUX. The
reconfigurable unit (RU), in turn, is subdivided into the ρμ-code unit and the Cus-
tom Computing Unit (CCU). The CCU is implemented in reconfigurable hardware,
e.g., a field-programmable gate array (FPGA), and memory. The application code
runs on the GPP except for the accelerated parts implemented on the CCU used to
speed up the overall program execution. Exchange of data between the main and the
reconfigurable processors is performed via the exchange registers (XREGs).

3.2.6.2 Instruction Type, Reconfiguration and Execution

The reconfigurable processor operation is divided into two distinct phases: set and
execute. In the set phase, the CCU is configured to perform the targeted opera-
tions. Subsequently, in the execute phase, the actual execution of the operations

www.manaraa.com

62 3 Deployment of Reconfigurable Systems

takes place. Such decoupling allows the set phase to be scheduled well ahead of
the execute phase, thereby hiding the reconfiguration latency. As no actual execu-
tion is performed in the set phase, it can even be scheduled upward across the code
boundary in the instructions preceding the RU targeted code [84].

A sequential consistency programming paradigm is used for Molen [97]. It re-
quires only a one-time architectural extension of a few instructions that supports
a large user reconfigurable operation space. Although the complete ISA extension
comprises 8 instructions, the minimal instruction set (�ISA) of the ρμ-code unit
is enough to provide a working scenario. The instructions in this class are: set, exe-
cute, movtx and movfx. By implementing the first two instructions (set/execute), any
suitable CCU implementation can be configured and executed in the CCU space.
The movtx and movfx instructions are needed to provide the input/output interface
between the RU targeted code and the remaining application code to pass data, pa-
rameters or data references.

3.2.6.3 Code Analysis and Transformation

There is a framework responsible for transforming, from an annotated C application,
the binary to be executed on the PowerPC processor, with the instructions responsi-
ble for handling the reconfiguration and execution processes.

3.2.6.4 Evaluation

In [99], Molen was evaluated with the MPEG2 encoder/decoder. The most time
consuming operations among SAD (sum of absolute difference), 2D-DCT (two di-
mensional discrete cosine transform), and 2D-IDCT (two dimensional inverse DCT)
were optimized. Table 3.3 demonstrates the impact of implementing these kernels as
Molen hardware when comparing against a PowerPC processor without it, executing
different video sequences. Columns labeled with “theory” present the theoretically
achievable maximum speed up. Columns labeled with “impl.” contain the speedups
with respect to the considered Molen implementation.

Table 3.3 Molen Speed ups [99]

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 63

3.2.7 Morphosys

3.2.7.1 RU Coupling, Reconfigurable System and Granularity

MorphoSys [71, 88, 89] is a coarse-grain reconfigurable system. It was designed to
operate on 8 or 16-bit data. As can be observed in Fig. 3.14, the system comprises
of a RU, a modified RISC GPP (TinyRISC) and a memory interface unit with a
high bandwidth. Both processors and RU are resident on the same chip. However,
being different components, the RU is loosely coupled. The on-chip DMA controller
enables fast data transfers between main memory and Frame Buffer, which is a
memory interface, working similarly to a data cache.

The RU is organized as an array of Reconfigurable Cells (RCs) to facilitate SIMD
operations. The reconfigurable array is composed of 64 Reconfigurable Cells (orga-
nized as an 8 × 8 array). The RC is coarse-grain, with one ALU and multiplier, one
shifter, two multiplexers and a register file. Besides, there is the output and feedback
registers for data exchange. The RC is illustrated in Fig. 3.15.

The RC is configured through a 32-bit word, saved in the Context Register, found
in each RC. These words are stored in a special memory, called context memory.
The Context Memory provides context words to the RC Array in each cycle of
execution. Besides configuring the RC, they are also responsible for programming
the interconnection network.

The interconnection network can be seen in Fig. 3.16. It is comprised of three
hierarchical levels. The lowest level is a 2-D mesh, providing neighbor connectiv-

Fig. 3.14 Morphosys Organization

www.manaraa.com

64 3 Deployment of Reconfigurable Systems

Fig. 3.15 The Morphosys Reconfigurable Cell

Fig. 3.16 The Morphosys Interconnection Network

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 65

ity. Then, the “Intra-quadrant” level divides the array in four equal parts, each one
composed of 16 RCs (4 × 4). The array has 4 quadrants. Within each quadrant, a
given RC can access the output of any other cell in its same row or column. The last
level is the “Inter-quadrant”, composed of buses between adjacent quadrants, run-
ning across rows and columns. These buses are responsible for the communication
between RCs that are placed in different quadrants, but in the same row or column.

3.2.7.2 Instruction Type, Reconfiguration and Execution

The TinyRISC is responsible for controlling the RC array by the addition of spe-
cial instructions to its ISA. These instructions perform the following functions: data
transfer between main memory (SDRAM) and Frame Buffer; loading of context
words from main memory into the internal Context Memory; and execution con-
trol of the RC Array. Context data may be loaded into a non-active part of Context
Memory without interrupting RC Array operation. The Context Memory can store
up to 32 configurations.

The following steps are necessary for using the RU in the Morphosys system:
load from external memory context words into the Context Memory; Load compu-
tation data from the Frame Buffer from external memory; execute the computation
in the RC. At the same time, it is possible to load more data to the Frame Buffer.
This way, one is allowed to overlap actual computations with data transfers.

3.2.7.3 Code Analysis and Transformation

A graphical user interface was developed, called mView. It takes some user inputs
for each application (specification of operations and data sources/destinations for
each RC) and generates assembly code for the MorphoSys RC Array. This interface
can also be used to simulate the system. A prototype compiler that compiles hy-
brid code for MorphoSys (from C source code) has been developed using the SUIF
compiler environment [101]. The compilation is done after partitioning the code
between the TinyRISC processor and the RC Array.

3.2.7.4 Evaluation

The system was evaluated with the following programs [71, 89]: Video Compres-
sion (MPEG) Motion Estimation for MPEG, Discrete Cosine Transform (DCT) for
MPEG and Data Encryption/Decryption (IDEA Algorithm) and Automatic Target
Recognition (ATR). They were compared to different ASICs, GPPs and reconfig-
urable systems.

www.manaraa.com

66 3 Deployment of Reconfigurable Systems

3.2.8 ADRES

3.2.8.1 RU Coupling

ADRES [79] is a coarse-grained reconfigurable matrix tightly coupled to a Very
Long Instruction Word (VLIW) processor.

3.2.8.2 Reconfigurable System, Granularity, Instruction Type,
Reconfiguration and Execution

The ADRES, instead of being a fixed reconfigurable system, is generated from a
template, based on a XML description language. It is used to define things such
communication topology, employed operation set, resource allocation etc. The or-
ganization of the matrix is also not fixed. For instance, the functional units and reg-
ister files can be organized in diverse forms: two functional units could share only
one register file and so on. An example of a generated architecture can be observed
in Fig. 3.17.

In ADRES, although both are part of the same physical entity, the VLIW proces-
sor and the reconfigurable matrix are virtually two different components. Because
of this model, they can share resources. Some of the components of the VLIW pro-
cessor are reused in the reconfigurable matrix, as can be observed in Fig. 3.17. It is
important to point out that, although in a minor quantity, the functional units of the

Fig. 3.17 An example of an ADRES based reconfigurable system

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 67

VLIW processor can execute more operations when comparing to those placed in
the reconfigurable matrix.

Data communication is done by sharing both memory and register file. According
to the authors [79], this helps mapping high-level languages such as C to the ADRES
architecture more easily. The register file and memory cannot be simultaneously
shared in order to avoid synchronization and data integrity issues.

3.2.8.3 Code Analysis and Transformation

A framework was developed [80], together with a scheduling algorithm to be used
with the ADRES architecture. The IMPACT compiler is employed as frontend [50]
to parse the source code (in the C language). After optimization and analysis, it
generates an intermediate representation, called lcode. After that, the compiler tries
to find loops that can be optimized by the reconfigurable matrix. For the rest of the
code that is mapped to the VLIW processor, regular techniques are used in order
to find the best possible ILP. Finally, these two separated parts are merged together
to be executed on the system. The scheduler takes into account the fact that there
are shared resources between the VLIW processor and the reconfigurable unit and
communication between both parts is also considered.

3.2.8.4 Evaluation

The testbench used in [79] is composed of 4 different programs. They are typical
digital signal processing and multimedia applications. They are derived from C ref-
erence code of Texas Instruments DSP benchmarks and MediaBench [70]. IDCT is
an 8 × 8 inverse discrete cosine transformation; adpcm-dec refers to an ADPCM
decoder; mat mul is a matrix multiplication; and a FIR filter. Table 3.4 shows the
speedups presented by ADRES. In [78] an H.264/AVC decoder was implemented
to be executed in ADRES, achieving a speed up from 1.3 to 1.9 times, depending
on the input bitstream.

Table 3.4 ADRES Speed-ups over the standalone VLIW processor

www.manaraa.com

68 3 Deployment of Reconfigurable Systems

3.2.9 Concise

3.2.9.1 RU Coupling and Granularity

The Concise system [68] is a tightly coupled, fine grain reconfigurable unit, based
on a CPLD.

3.2.9.2 Reconfigurable System, Instruction Type, Reconfiguration and
Execution

The RFU was included into the pipeline of a very simple RISC processor. This RFU
is driven by specific RFU instructions, generated using a smart compiler that will be
described in the next subsection. This way, the ISA of the processor was extended
to support these new RFU instructions. The extra functional unit based on CPLD
works in parallel to the ALU of the processor. The RU does not support partial
reconfiguration.

The main principle of Concise is to minimize latency caused by reconfigura-
tion. For that, multiple reconfigurable instructions are encoded within one configu-
ration, so the number of times the RU must be reconfigured is reduced. Figure 3.18
demonstrates Concise. The RU (that follows a RISC traditional register-to-register
format) is composed of the opcode, two sources and one destination registers. Two
fields are specific for the reconfiguration mechanism. The DEC field goes directly
to the CPLD, indicating which function it should do, while the CONF field indi-
cates which configuration the CPLD should use. This way, each configuration of the

Fig. 3.18 The Concise
System

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 69

CPLD should have a decoder to understand the DEC field. One advantage claimed
by the authors is that using this approach the latency time of switching from one re-
configurable instruction to another would be reduced. This way, it would be possible
to get good results even when two custom instructions are near to each other.

3.2.9.3 Code Analysis and Transformation

A smart compiler was developed in order to try to find optimal results in terms of
area and performance for each custom instruction and to hide as much as possible
the steps of RFU instruction generation from the programmer.

First, the source code, usually written in C, is processed by the compiler front-
end, generating an intermediate code, which is represented by a DFG. Then, the
framework looks for hot spot candidates, using profile data. Just arithmetic and logic
operations are considered. These candidates are grouped in clusters, that will be
transformed later in a CPLD configuration. The grouping process follows a certain
criteria. For instance, candidates that are found in the same loop are usually grouped
together; while hot spots with lower logic complexity are grouped in bigger clusters.

These clusters are sent to a translator, which transforms these clusters in HDL.
The decode logic is added, so the different custom instructions that are placed in the
same cluster can be executed independently. After that, the HDL is synthesized to
hardware. Timing and fitting information is sent back to the cluster detection and
selection mechanism. Considering this data, a cluster can be rearranged or even dis-
carded. This cycle keeps going until a solution that can be considered satisfactory is
found. The DFG segments that were transformed to reconfigurable instructions are
labeled in the DFG. Final code is then generated, with register allocation, instruc-
tion scheduling and the assembly code. This assembly is sent to another assembler,
which recognizes the labels that correspond to reconfigurable instructions. Finally,
the netlist generated in the synthesis is combined with the assembly, so the final
executable is ready.

3.2.9.4 Evaluation

In [68], the architecture is evaluated with encryption applications: DES (Data En-
cryption Standard, which is a block cipher) and A5 (stream cipher). Speedups
reached 40% when compared to the standalone RISC processor.

3.2.10 PACT-XPP

The main purpose of PACT-XPP (eXtreme Processing Platform) [44] is to execute
data-stream software in the array, using runtime and self reconfiguration mecha-
nisms.

www.manaraa.com

70 3 Deployment of Reconfigurable Systems

3.2.10.1 RU Coupling

PACT-XPP is a standalone system, meaning that it does not work with any other
GPP.

3.2.10.2 Reconfigurable System, Granularity, Instruction Type

The reconfigurable unit of XPP is based on a hierarchical array. This array is coarse
grain, composed of PAEs (Processing Array Elements), which communicate to each
other using the communication network. The PAE is composed of PAE objects. They
can be memory, ALU etc. For example, the PAE that is based on ALU is composed
of registers for receiving and sending data, besides the ALU itself for performing
the computations. The structure of a PAE is shown in Fig. 3.19. According to the
authors [44] any desired functionality can be added to the XPP architecture. PAE
objects are called of self-synchronizing type, because their operation starts soon
after data input packets are available for them. In the same way, their results are
forwarded as soon as they are ready, so they can be consumed by other PAEs.

Rectangular blocks of PAEs compose a PAC (Processing Array Cluster). A de-
vice based on the XPP architecture has one or more PACs. The example in Fig. 3.20
contains four PACs. Each PAC is attached to a Configuration Manager (CM), re-
sponsible for the configuration of that block.

As already stated, the PAE communicate to each other using a packet oriented
network. There is a hardware protocol to ensure data will not be lost, so no explicit
scheduling of operation is necessary. Two kinds of packets can be sent through this
network: data and event packets. Data packets have a fixed bit width, depending on
the implementation of the device. Event packets usually are a few bits long. They

Fig. 3.19 An example of a PAE and a and ALU-object in PACT-XPP

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 71

Fig. 3.20 A set of Process Array Clusters (PACs)

transmit state information to the network, such as the ALU state. Hence, the trans-
mission of conditional computations, depending on the state of previously executed
data, is possible. Event packets can also trigger a self reconfiguration, meaning that
part of the array can be configured because of some computation that has occurred
internally. These signals can also be used to control the data streams.

3.2.10.3 Reconfiguration and Execution

The configuration control is not centralized, but rather distributed: several CMs are
responsible for that. The CM is basically a state machine with an internal RAM, used
for configuration caching. There is one CM for each PAC. This way, it is possible
to configure some PACs at the same time while others are executing an operation.
Hence, entire applications can be executed in different parts of the array simultane-
ously.

Devices with several packs contain additional Configuration Managers, so a hier-
archal tree of CMs is formed (Fig. 3.20). The root is called SCM (Supervising CM).
The SCM has an external interface that connects it with the configuration memory.
The interface is composed of address and data buses, plus control signals. The re-
configuration can be activated in two ways: externally or by special events that were
originated inside the array. The authors call this approach of self-reconfiguring de-
sign [44].

Each PAE holds an internal state. For instance, a PAE can be configured or free,
so the control system can figure if a PAE can be reconfigured at a given moment
or not. This way, a PAE cannot be reconfigured while still being used for another
application. Furthermore, while executing the computation of a specific application,
the structure of the array (configuration) used for that application remains static:
connections or operators are not changed. The XPP supports pre fetching of con-
figurations in order to hide configuration latency, besides the possibility of fetching
configuration while PAEs are still executing another.

www.manaraa.com

72 3 Deployment of Reconfigurable Systems

Besides the possibility of configuring or removing an entire configuration, it is
also possible to partially reconfigure the system. Partial reconfiguration can be used
when the configuration for two applications do not differ too much. In certain cases,
distinct configurations can be very similar, like for instance, in adaptive filters. The
authors call the process of not changing the entire application, but rather just a part
of it, of differential configuration. According to them, this kind of configuration is
more effective than complete configurations. One example of this operation is just
changing constant inputs or the function of an ALU. A differential configuration
always has a complete configuration as a base.

3.2.10.4 Code Analysis and Transformation

To map the application onto the reconfigurable system, a structural language with
reconfiguration primitives was developed. It is called NML (Native Mapping Lan-
guage). The NML allows the access of all hardware features to the programmer.
NML is similar to structural HDLs, such as VHDL. PAE objects are explicitly al-
located. Furthermore, they can also be placed according to the programmer desires.
Connections between components can also be specified. There is a modified C com-
piler, called XPP-VC [47, 48]. It has the role of translating C functions to NML
modules. This C compiler is restricted by a subset of C language and the use of a
specific library. The programmer can mix both approaches. This way, it is possi-
ble to hand code the most critical hot spots in NML, in order to achieve maximum
performance, while using the C compiler for the rest of code.

3.2.10.5 Evaluation

The case studied in [44] was evaluated with the algorithms presented in Table 3.5.
This same table also shows the performance of each program in terms of ops/cycle
and gigaops/sec.

Table 3.5 Pact-XPP: Performance

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 73

3.2.11 RAW

3.2.11.1 RU Coupling

RAW, or Reconfigurable Architecture Workstation [94, 100], is a standalone and
totally independent system, not working with any GPP.

3.2.11.2 Reconfigurable System and Granularity

RAW is divided in 16 parts, called tiles (Fig. 3.21). Each tile is composed of routers;
a MIPS like processor, with a 8 stages pipeline; a floating point unit with a four
stages pipeline; 32 Kb of data and 96 Kb of instruction caches. Each tile was de-
signed to take one clock cycle to compute data. RAW does not use buses, rather,
it uses a switched interconnection network. According to the authors, the fact that
memory is distributed across the tiles eliminates the memory bandwidth bottleneck,
providing significantly lower latencies to each memory module.

The switches can be programmed both dynamically and statically. The later
means that the switches are scheduled before execution starts and are maintained
during the whole program lifecycle. The static router is pipelined, and controls two
routing crossbars (so there are two physical networks to interconnect the tiles with
this purpose). Each router can send values to different places: north, east, south,
west neighbors; to the GPP and to the other crossbar. To support dynamic routing, a
pair of wormhole oriented networks was added to the architecture.

Fig. 3.21 RAW Organization

www.manaraa.com

74 3 Deployment of Reconfigurable Systems

3.2.11.3 Instruction Type, Reconfiguration and Execution

Each tile runs a single thread, having its own program counter, separated from each
other. As commented before, the switches can be programmed with static commu-
nication, so the compiler can be responsible for threads communication, meaning
that synchronization issues can be amortized.

An operating system was developed. It is responsible for dynamic scheduling of
processes and context switches, as any conventional GPP. Each process can use one
or more tiles. The placement of these processes in the architecture can be variable,
meaning that each process does not necessarily need to be always executed on the
same place. This fact is hidden to the user, though. This way, the placement of tasks
inside the network is virtualized, in the sense that the system adapts itself at run
time to the running process. The OS always allocates a rectangular-shaped number
of tiles to each process.

3.2.11.4 Code Analysis and Transformation

The architecture is visible to the programmer and compiler, so one can program the
routing, having direct access to the data transfer mechanism. The main role of the
specific compiler is to take a single or multi threaded programs written in any high
level programming language, and map it to the hardware. A specific compiler (C
and Fortran) was developed, called RawCC [72], and it is responsible for partioning
the program graph, for placing the operations and also for programming the routes
of the static network. A large number of studies on compilation techniques has been
done by the authors [42, 43].

3.2.11.5 Evaluation

To evaluate the system, a specific benchmark set was developed [40], composed
of the following algorithms: Binary heap, merge and Bubblesort, DES encryp-
tion, Integer FFT, Jacobi, Conway’s Game of Life, Integer matrix multiplication,
N queens, single-source and multiplicative shortest path and transitive closure. The
benchmarks executed on RAW were compared against their respective software and
FPGA implementations, with different input data. The results on performance vary
in a great range depending on the algorithm. For instance, one instance of N queens
does not present significant speedup when comparing to its FPGA implementation,
while the Conway’s Game of Life being executed on RAW achieves a speedup factor
of 1758 when comparing to its software implementation.

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 75

3.2.12 Onechip

3.2.12.1 RU Coupling

The Onechip [49, 104] is a reconfigurable system tightly coupled to a MIPS proces-
sor, working as another functional unit in the execution stage.

3.2.12.2 Reconfigurable System and Granularity

The system can be composed of one or more reconfiguration units. These units are
used in parallel with the basic functional units found in the processor. They are
called PFU (Programmable Functional Units). While the basic functional unit is
build in fixed logic and responsible for the regular MIPS operations, such as arith-
metical and logic ones, PFUs can implement any application specific function, ac-
cording to a given application. The PFUs use the processor components such as
registers and memory interface as if they were the basic functional unit. Because of
new instructions are added and none are modified, it is claimed that binary compati-
bility is maintained, in the sense that old code still can be executed after the Onechip
architecture is coupled to the MIPS processor.

One prototype of the Onechip System was developed in FPGA technology, as
can be observed in Fig. 3.22. The reconfigurable logic takes much more area then
the fixed resources. Hence, the main processor was placed in the center, immersed
in the middle of the reconfigurable area, so the distance between the processor and
the reconfigurable units is balanced.

Fig. 3.22 General overview of the Onechip implementation

www.manaraa.com

76 3 Deployment of Reconfigurable Systems

3.2.12.3 Code Analysis and Transformation

In [49] it is stated that code annotation is used in order to help the assembler to
identify those instructions that are related to the reconfigurable system, so it could
be simulated. However, the designer is responsible for both code annotation and hot
spots identification.

3.2.12.4 Instruction Type, Reconfiguration and Execution

The unit is accessed using the new added instructions. In the example given in [104],
a PFU was programmed to behave as a universal asynchronous receiver and trans-
mitter. This would be executed in Onechip with the following instructions:

URTR REG (UART read instr.)
SW mem-loc, REG (STORE WORD instr.)

The REG is any of the general purpose registers available in the MIPS processor,
and mem-loc is a memory pointer. As can be observed, PFU instructions share the
same resources with the rest of the processor.

3.2.12.5 Evaluation

Onechip was evaluated with one and two dimensional versions of DCT [104]. More-
over, the system was coupled to different processors. In [49], four applications were
tested: JPEG Image compression, ADPCM Audio coding, PEGWIT Data encryp-
tion and MPEG2 Video encoding. When considering the unit coupled to an out-of-
order processor, speedups of up to 32 times were obtained.

3.2.13 Chess

Chess [77] is a reconfigurable system developed by HP labs. The reconfigurable unit
is called RRA (reconfigurable arithmetic array), and it is intended to be used with
multimedia applications.

3.2.13.1 RU Coupling, Reconfigurable System, Granularity, Instruction Type,
Reconfiguration and Execution

The RRA is composed of 4-bit ALUs. Each ALU can perform 16 different func-
tions (such as addition, subtraction and logical ones), generating a result of 4 bits
plus a carry output. It is possible to cascade them in order to achieve wider word

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 77

Fig. 3.23 How the ALUs are organized in Chess

sizes. These instructions can be constant or dynamic. Constant means that they are
static during the whole execution, and are part of the configuration. The ALUs are
connected to each other through a bus of 4 bits. The responsible components for
the interconnection are the switchboxes. Each ALU is adjacent to four switchboxes,
and vice-versa. This way, each ALU has input and output buses on all four sides,
and is able to communicate to any of the eight surrounding ALUs, as demonstrated
in Fig. 3.23.

Switchboxes can work in two different modes: a cross point switch with 64 con-
nections (64 bits are necessary for configuring it), so it can be connected to two
buses (vertical and horizontal) that pass over them; or they can be employed as a
small RAM, making use of the 64 bits initially used for keeping the configuration.
However, if a large number of switchboxes is used as RAM, the routing capability
of the array will be reduced. Although the grain is coarser than traditional FPGAs,
this architecture can still be considered as fine grain, since it works at the nibble
(4 bits) level (coarse grain architectures usually work with at least 8 bits at a time).

Memory blocks are distributed throughout the basic array of ALUs and switch-
boxes. The baseline design provides one RAM of 256 words (8 bytes each) per
16 ALUs. Each block RAM takes approximately the same area as 4 ALUs and
switchboxes. To achieve higher clock speed factors, CHESS provides two regis-
ters/buffers per switchbox (in addition to the register in each ALU), so it is possible
to heavily pipeline long connections. CHESS does not support partial reconfigura-
tion.

www.manaraa.com

78 3 Deployment of Reconfigurable Systems

3.2.13.2 Code Analysis and Transformation, and Evaluation

The system was evaluated with an automatically generated layout running an im-
plementation of an 8 point 1D IDCT (a part of the JPEG decoding algorithm). The
process of building the structure as well as fitting the application in the system must
be done by the designer.

3.2.14 PRISM I

PRISM [39] is an acronym for Processor Reconfiguration through Instruction Set
Metamorphosis. PRISM-I consists of a special compiler (configuration compiler)
and a reconfigurable hardware platform.

3.2.14.1 RU Coupling, Reconfigurable System, Granularity, Instruction Type,
Reconfiguration and Execution

PRISM-I is loosely coupled, fine-grain (FPGA based) reconfigurable system.
PRISM-I platform is composed of a processor board with a processor (Armstrong),
which is a version of the M68010, and a second board with four Xilinx 3090 FPGAs.
They are interconnected through the M68010 coprocessor interface.

3.2.14.2 Code Analysis and Transformation

The special compiler receives as input a high level language, producing two images:
one for the hardware and another for the software. The hardware image is composed
of a set of specifications to be used with the reconfigurable platform. It is generated
from C constructs that are transformed to a hardware specification language, which
will be mapped to a XILINX FPGA. According to the authors, it uses a similar
technique when comparing to automatic synthesis to silicon.

3.2.14.3 Evaluation

Several functions were implemented, such as: hamming (24 times faster when com-
paring to the host processor), bit reversal, a digital logic circuit simulator (almost 7
times faster).

3.2.15 PRISM II

PRISM I was considered as a “proof of concept” by the authors. This way, PRISM
II was built to run real life applications, although the principles are the same of the
previous architecture [73].

www.manaraa.com

3.2 Examples of Reconfigurable Architectures 79

3.2.15.1 RU Coupling

The system is loosely coupled to the AMD Am29050 processor.

3.2.15.2 Reconfigurable System, Granularity, Instruction Type,
Reconfiguration and Execution

The main goals of PRISM II were: hardware synthesis of functions from a subset
of C language; support for sequential logic in this synthesis (PRISM I just supports
combinational logic) so more constructions, such as loops, can be mapped; opti-
mizations on data transfer between the RU and GPP; in opposite to PRISM-I, be
cost effective in terms of hardware. In addition, more optimizations were imple-
mented when compared to PRISM I. For instance, PRISM II is faster concerning
context switching in the RU.

The PRISM hardware platform is shown in Fig. 3.24. As can be observed, more
than one FPGA (in this case, Xilinx 4010) can be used. Data buffers are responsible
for the management of data exchange. The global bus is used to provide control
signals as well data exchange between the FPGAs. The communication between
the GPP and the reconfigurable units is done using the co-processor interface of the
Am29050. Data transferred to and from FPGAs can be in different quantities: 8, 16
or 32 bits.

Fig. 3.24 Block Diagram of
the PRISM-II Reconfigurable
System

www.manaraa.com

80 3 Deployment of Reconfigurable Systems

Table 3.6 Speedups using
two different hardware
synthesis programs

3.2.15.3 Code Analysis and Transformation

The configuration compiler of PRISM-II has two components. The first one is a
C parser and optimizer, based on GCC. From this intermediate generated program
file, both control and data flows graphs are constructed. These graphs are used for
hardware synthesis (the second component).

3.2.15.4 Evaluation

The system was evaluated with the following benchmarks: Piecewise linear approxi-
mation to a function, Hamming distance and computation, Bit reversal, Mix of logic
functions, and bit search. The speedups when comparing against the standalone pro-
cessor are reported in Table 3.6. Two different programs for the hardware synthesis
were employed: “VHDL Designer” and “X-Blox”.

3.2.16 Nano

3.2.16.1 RU Coupling

The Nano system [103] consists of a reconfigurable logic tightly coupled to an
accumulator-based processor, both sharing the same processor resources.

3.2.16.2 Reconfigurable System, Granularity, Instruction Type,
Reconfiguration and Execution

Nano implements the processor (nP core) within an FPGA, so the processor itself
is also programmed in FPGA (although it is not configurable). The reconfiguration
in the FPGA is achieved using custom instructions. The nP core is a general pur-
pose processor. It has no register file, just an accumulator. With its pipeline of three
stages (Instruction Fetch, Decode and Execution), it implements just six different
instructions. They have fixed length of 2 bytes each, divided in two parts: opcode
and operand reference. The custom instruction modules interface with the nP core
using the registers and control signals.

www.manaraa.com

3.3 Recent Dataflow Architectures 81

3.2.16.3 Code Analysis and Transformation

New custom instructions are developed with high level synthesis tools. After a cus-
tom instruction is built, it goes to a library, so it can be reused in future designs. User
must program the nP in assembly, using the core nP instructions or the custom ones
previously implemented. This way, the development of custom instruction as well
as the decoder responsible for them should be programmed by the designer. An in-
tegrated assembler is responsible for generating the executable with instructions of
both processor and custom logic.

3.2.16.4 Evaluation

The system was implemented with FPGA based on the Xilinx 3000 series and was
evaluated with an nP configuration designed to control a sound card, which has
three main functions: transfer of PCM audio, handle asynchronous data transfer and
control the external synthesis engine. Five modules were added to the nP to handle
with the following interfaces: MIDI, Codec, PC, Synthesis and Memory.

3.3 Recent Dataflow Architectures

More recently, new dataflow architectures were proposed. These architectures aban-
don program counter and the linear von-Neumann execution that could limit the
amount of parallelism to be explored. These systems are highly dependent on com-
pilers and tools to code generation, which involves placing parts of the code in the
correct order in the processing elements, resolve synchronism, parallelism analysis
and other aspects of the runtime environment. This way, the main effort is on the de-
velopment of these tools, not on the hardware design, which is usually very simple
and regular.

As a first example, TRIPS [58, 87] is a hybrid von-Neumann/dataflow archi-
tecture that combines an instance of coarse-grained, polymorphous grid processor
cores with an adaptive on-chip memory system. To better explore the application
parallelism and provide a large use of available resources, TRIPS uses three differ-
ent modes of execution: D-morph, which explores parallelism in instruction level;
T-morph, which works at the thread level, mapping multiple threads onto a sin-
gle TRIPS core; and S-morph, which is targeted to applications like streaming me-
dia with high data-level parallelism. Figures 3.25 and 3.26 give an overview of the
TRIPS architecture.

Another example of a dataflow machine is Wavescalar [90, 91] that, likewise
TRIPS, relies on the compiler to statically allocate instructions into its hardware
structures. As it can be observed in Fig. 3.27, the basic processing element is very
similar to the one found in TRIPS. However, this architecture is even more regular
when considering its structure.

www.manaraa.com

82 3 Deployment of Reconfigurable Systems

Fig. 3.25 General overview of the TRIPS architecture: the TRIPS Chip

Fig. 3.26 The TRIPS core, and an execution node

In the same work, the motivations for building a dataflow architecture are dis-
cussed. They are related to some limitations that superscalar processors present,
mainly because they are Von-Neumann oriented architectures. The so-called pro-
cessor scaling wall is discussed, which emerges because of the following reasons:

www.manaraa.com

3.4 Summary and Comparative Tables 83

Fig. 3.27 The Wavescalar architecture

• The difference in terms of speed between (fast) transistors and (slow) wires is
increasing, meaning that there is a disparity between computation and communi-
cation;

• The increasing cost of circuit complexity;
• The decreasing reliability of these circuits.

According to the authors, superscalar processors will be the main victims, since
they have a huge infrastructure with slow broadcast networks, associative searches,
complex control logic and inherently centralized structures. Moreover, other draw-
backs regarding superscalar architectures can be cited:

• They have an inherent complexity, making efficient implementations a challenge;
• Their execution model centers around instruction fetch. It is an intrinsic serializa-

tion point.

On the other hand, dataflow machines must convert control dependences into data
dependences. To accomplish this, they explicitly send data values to the instructions
that need them, instead of broadcasting these data values via the register file. The
potential consumers are known at compile time.

3.4 Summary and Comparative Tables

3.4.1 Other Reconfigurable Architectures

Other reconfigurable systems are worth to be briefly cited in this section, such as:
DISC [102], Pleiades [106], Montium [66], XiRISC [75], ReRISC [96], Napa [85],

www.manaraa.com

84 3 Deployment of Reconfigurable Systems

Splash 2 [38], DPGA [55, 93], Colt [67], Matrix [81], DReAM [45], Chameleon
[86] and KressArray [62].

Table 3.7 summarizes the whole set of existent reconfigurable architectures, with
their main characteristics. Other reference tables can be found in [41] and [61].

In Table 3.8, it is shown when each architecture was first proposed and references
to their most cited papers.

3.4.2 Benchmarks

Table 3.9 reports a list of algorithms used by some of the reconfigurable architec-
tures mentioned before. Since it is very hard to re-execute some of the algorithms
because of the lack of information about them, and no access to the exact source
code is available, one will briefly discuss the behavior of these algorithms, based
on the articles written by the associated authors or on works that have already used
somehow the same benchmarks.

REMARC executes MPEG2 decoding, optimizing just two kernels: IDCT and
MC that, according to the authors, cover more than 70% of the total execution time.
It also executes MPEG2 encoding, optimizing the Motion Estimation, which covers
98% of total execution time. The third algorithm employed is DES. DES is a well-
known cryptography algorithm and, as can be observed in Fig. 3.28, its structure
facilitates its implementation in reconfigurable logic, for its regularity and simplicity
of basic operations to be performed.

GARP, in turn, was evaluated with the following algorithms:

• DES: Just discussed before.
• Sorting: Different types of sorting, including Quicksort (1 million objects). Sort-

ing algorithms usually have just one kernel used for sorting the components,
which is repeated several times.

• Image Dithering: It is a vector processing algorithm. Again, it is based on the
same kernel that is repeated several times through the image. In this case, a dither
was applied to a full color image of 640 × 480 pixels to a fixed palette of fewer
than 256 colors.

The following algorithms were executed on the CHIAMERA system:

• Compress/SPEC92: It is interesting that, opposite to the previous algorithms, this
one presented a speedup of just 1.11. This can be explained because it is very
likely that there are no distinct kernels for optimization: in the work of [74],
in a study on value prediction, the authors show that this algorithm has a small
value locality concerning loads, which could be a reflex of a small reutilization
of kernels.

• Eqntott/SPEC92: According to the paper, this program spends about 85% of its
time in a single routine, cmppt. In the same work on value prediction cited before,
Eqntott has a high degree of load value locality.

www.manaraa.com

3.4 Summary and Comparative Tables 85

Table 3.7 General characteristics of several reconfigurable architectures

www.manaraa.com

86 3 Deployment of Reconfigurable Systems

Table 3.8 First year of publication and references

• Conway’s Game of Life: According to the paper, it is basically an array computa-
tion. In the software version of the algorithm, more than half of the time is spent
in the routines getbit and putbit, which perform the reads and writes of the value
of individual cells.

RaPiD, in turn, executes only two algorithms: FIR filter and Matrix Multiplica-
tion. These algorithms are easily programmable and are highly based on just one
kernel with almost no control instructions at all, proving once more that traditional
reconfigurable architectures in general just attack one niche of applications.

To evaluate PipeRench’s performance, the authors have also chosen dataflow ori-
ented software, dominated by very distinct kernels, which is a characteristic of al-
gorithms that are highly based on filters or transforms, as can be observed:

• Automatic target recognition (ATR): shape-sum kernel of the Sandia algorithm
for automatic target recognition;

• Cordic: Honeywell timing benchmark for Cordic vector rotations;
• DCT: 1D, 8-point discrete cosine transform;
• DCT-2D: 2D discrete cosine transform;
• FIR: finite-impulse response filter, with 20 taps and 8-bit coefficients;
• IDEA: complete 8-round International Data Encryption Algorithm;
• Nqueens: an evaluator for the N queens problem on an 8 × 8 board;
• Over: the Porter-Duff over operator;
• PopCount: a custom instruction implementing a population count instruction;

Molen was evaluated with the MPEG2 encoder/decoder. The most time consum-
ing operations among SAD (sum of absolute difference), 2D-DCT (two dimensional

www.manaraa.com

3.4 Summary and Comparative Tables 87

Table 3.9 Benchmark executed on the most popular reconfigurable architec-
tures

discrete cosine transform), and 2D-IDCT (two dimensional inverse DCT) were op-
timized. These kernels, in turn, are the most time consuming ones in the MPEG2
algorithm and highly dataflow oriented [69].

ADRES, OneChip, TRIPS and XPP basically execute the very same class of
algorithms, as can be observed in the same table: they are encoders or decoders,
matrix operations or filters. This way, it is clear that the design of a reconfigurable
system able to optimize any kind of algorithm is a task to be handled.

Reinforcing this idea, it is very interesting to note that almost the totally of the
referenced works about reconfigurable architectures, analyzed in Sect. 3.1, employ
as a benchmark set exactly the ones which have very distinct kernels subject of op-

www.manaraa.com

88 3 Deployment of Reconfigurable Systems

Fig. 3.28 Steps of the DES
algorithm [83]

timization, and those that are very dataflow oriented. As previously discussed, these
two characteristics make these benchmarks the most suitable ones for execution
in reconfigurable fabric. They correspond to just one area in a graph considering
two axis (number of distinct kernels and control/dataflow behavior), as illustrated in
Fig. 3.29. As explored in Sect. 2.6.1, this situation is far from being the reality of
embedded systems and, of course, of the general purpose computation field.

www.manaraa.com

References 89

Fig. 3.29 Different groups of
behaviors: reconfigurable
systems usually attack just
one niche

This way, reconfigurable systems are only efficient for a determined field of ap-
plication. To make this scenario even worse, the new era of embedded systems gives
to the user the opportunity of installing and executing different applications, whose
behavior is non-predictable during the production of the devices, as in the general
purpose computation. This lack of flexibility can be solved only through the use of
dynamic optimization: the system’s ability to adapt itself during execution. This will
be the subject of the next chapter.

References

38. Arnold, J.M., et al.: The splash 2 processor and applications. In: International Conference on
Computer Design. CS Press, München (1993)

39. Athanas, P.M., Silverman, H.F.: Processor reconfiguration through instruction-set metamor-
phosis. Computer 26(3), 11–18 (1993). doi:10.1109/2.204677

40. Babb, J., Frank, M., Lee, V., Waingold, E., Barua, R., Taylor, M., Kim, J., Devabhaktuni,
S., Agarwal, A.: The raw benchmark suite: computation structures for general purpose com-
puting. In: FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom
Computing Machines, p. 134. IEEE Computer Society, Los Alamitos (1997)

41. Barat, F., Lauwereins, R.: Reconfigurable instruction set processors: A survey. In: RSP ’00:
Proceedings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP
2000), p. 168. IEEE Computer Society, Los Alamitos (2000)

42. Barua, R., Lee, W., Amarasinghe, S., Agarwal, A.: Maps: A compiler-managed memory
system for raw machines. In: Proceedings of the 26th International Symposium on Computer
Architecture, pp. 4–15 (1998)

43. Barua, R., Lee, W., Amarasinghe, S., Agarwal, A.: Memory bank disambiguation using mod-
ulo unrolling for raw machines. In: Proceedings of the ACM/IEEE Fifth Int’l Conference on
High Performance Computing (HIPC) (1998)

44. Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.: Pact xpp—
a self-reconfigurable data processing architecture. J. Supercomput. 26(2), 167–184 (2003).
doi:10.1023/A:1024499601571

45. Becker, J., Pionteck, T., Glesner, M.: DReAM: ADynamicallyReconfigurable architecture
for future mobile communication applications. In: Field-Programmable Logic and Appli-
cations: The Roadmap to Reconfigurable Computing. Lecture Notes in Computer Science,

http://dx.doi.org/10.1109/2.204677
http://dx.doi.org/10.1023/A:1024499601571

www.manaraa.com

90 3 Deployment of Reconfigurable Systems

vol. 1896, pp. 312–321. Springer, Berlin/Heidelberg (2000). http://www.springerlink.com/
content/3kvjdm6qxf9k7xt5/

46. Callahan, T., Hauser, J., Wawrzynek, J.: The Garp architecture and C compiler. Computer
33(4), 62–69 (2000). doi:10.1109/2.839323

47. Cardoso, J.M., Weinhardt, M.: Xpp-vc: A c compiler with temporal partitioning for
the pact-xpp architecture. In: Field-Programmable Logic and Applications: Reconfig-
urable Computing Is Going Mainstream. Lecture Notes in Computer Science, vol. 2438,
pp. 207–226. Springer, Berlin/Heidelberg (2002). http://www.springerlink.com/content/
2rwnvdfwv79wev9u/

48. Cardoso, J.M.P., Weinhardt, M.: Fast and guaranteed c compilation onto the PACT-XPP
reconfigurable computing platform. In: FCCM ’02: Proceedings of the 10th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, p. 291. IEEE Computer
Society, Los Alamitos (2002)

49. Carrillo, J.E., Chow, P.: The effect of reconfigurable units in superscalar processors. In:
FPGA ’01: Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field
Programmable Gate Arrays, pp. 141–150. ACM, New York (2001). doi:10.1145/360276.
360328

50. Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.M.W.: Impact: an architec-
tural framework for multiple-instruction-issue processors. SIGARCH Comput. Archit. News
19(3), 266–275 (1991). doi:10.1145/115953.115979

51. Chou, Y., Pillai, P., Schmit, H., Shen, J.P.: Piperench implementation of the instruction path
coprocessor. In: MICRO 33: Proceedings of the 33rd Annual ACM/IEEE International Sym-
posium on Microarchitecture, pp. 147–158. ACM, New York (2000). doi:10.1145/360128.
360144

52. Cronquist, D.C., Fisher, C., Figueroa, M., Franklin, P., Ebeling, C.: Architecture design of
reconfigurable pipelined datapaths. In: ARVLSI ’99: Proceedings of the 20th Anniversary
Conference on Advanced Research in VLSI, p. 23. IEEE Computer Society, Los Alamitos
(1999)

53. Cronquist, D.C., Franklin, P., Berg, S.G., Ebeling, C.: Specifying and compiling applica-
tions for rapid. In: FCCM ’98: Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, p. 116. IEEE Computer Society, Los Alamitos (1998)

54. David, H.S., Whelihan, D., Tsai, A., Moe, M., Levine, B., Taylor, R.R.: Piperench: A virtual-
ized programmable datapath in 0.18 micron technology. In: Proc. of IEEE Custom Integrated
Circuits Conference, pp. 63–66 (2002)

55. DeHon, A.: Dpga utilization and application. In: FPGA ’96: Proceedings of the 1996 ACM
Fourth International Symposium on Field-Programmable Gate Arrays, pp. 115–121. ACM,
New York (1996). doi:10.1145/228370.228387

56. Ebeling, C., Cronquist, D.C., Franklin, P.: Rapid—reconfigurable pipelined datapath. In: FPL
’96: Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart
Applications, New Paradigms and Compilers, pp. 126–135. Springer, London (1996)

57. Ebeling, C., Fisher, C., Xing, G., Shen, M., Liu, H.: Implementing an ofdm receiver on the
rapid reconfigurable architecture. IEEE Trans. Comput. 53(11), 1436–1448 (2004). doi:10.
1109/TC.2004.98

58. Gebhart, M., Maher, B.A., Coons, K.E., Diamond, J., Gratz, P., Marino, M., Ranganathan,
N., Robatmili, B., Smith, A., Burrill, J., Keckler, S.W., Burger, D., McKinley, K.S.: An eval-
uation of the trips computer system. In: ASPLOS ’09: Proceeding of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 1–12. ACM, New York (2009). doi:10.1145/1508244.1508246

59. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.: Piperench:
A reconfigurable architecture and compiler. Computer 33(4), 70–77 (2000). doi:10.1109/2.
839324

60. Goldstein, S.C., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R.R., Laufer, R.:
Piperench: a co/processor for streaming multimedia acceleration. In: ISCA ’99: Proceedings
of the 26th Annual International Symposium on Computer Architecture, pp. 28–39. IEEE
Computer Society, Los Alamitos (1999). doi:10.1145/300979.300982

http://www.springerlink.com/content/3kvjdm6qxf9k7xt5/
http://www.springerlink.com/content/3kvjdm6qxf9k7xt5/
http://dx.doi.org/10.1109/2.839323
http://www.springerlink.com/content/2rwnvdfwv79wev9u/
http://www.springerlink.com/content/2rwnvdfwv79wev9u/
http://dx.doi.org/10.1145/360276.360328
http://dx.doi.org/10.1145/360276.360328
http://dx.doi.org/10.1145/115953.115979
http://dx.doi.org/10.1145/360128.360144
http://dx.doi.org/10.1145/360128.360144
http://dx.doi.org/10.1145/228370.228387
http://dx.doi.org/10.1109/TC.2004.98
http://dx.doi.org/10.1109/TC.2004.98
http://dx.doi.org/10.1145/1508244.1508246
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1145/300979.300982

www.manaraa.com

References 91

61. Hartenstein, R.: Coarse grain reconfigurable architecture (embedded tutorial). In: ASP-DAC
’01: Proceedings of the 2001 Conference on Asia South Pacific Design Automation, pp. 564–
570. ACM, New York (2001). doi:10.1145/370155.370535

62. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: KressArray xplorer: a new cad
environment to optimize reconfigurable datapath array. In: ASP-DAC ’00: Proceedings of
the 2000 Asia and South Pacific Design Automation Conference, pp. 163–168. ACM, New
York (2000). doi:10.1145/368434.368597

63. Hauck, S., Fry, T.W., Hosler, M.M., Kao, J.P.: The chimaera reconfigurable functional unit.
In: FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Comput-
ing Machines, p. 87. IEEE Computer Society, Los Alamitos (1997)

64. Hauck, S., Fry, T.W., Hosler, M.M., Kao, J.P.: The chimaera reconfigurable functional unit.
IEEE Trans. Very Large Scale Integr. Syst. 12(2), 206–217 (2004). doi:10.1109/TVLSI.2003.
821545

65. Hauser, J.R., Wawrzynek, J.: Garp: a mips processor with a reconfigurable coprocessor. In:
FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing
Machines, p. 12. IEEE Computer Society, Los Alamitos (1997)

66. Heysters, P., Smit, G., Molenkamp, E.: A flexible and energy-efficient coarse-grained recon-
figurable architecture for mobile systems. J. Supercomput. 26(3), 283–308 (2003). doi:10.
1023/A:1025699015398

67. Jr, R.B., Athanas, P.M., Musgrove, M.D.: Colt: An experiment in wormhole run-time re-
configuration. In: High-Speed Computing, Digital Signal Processing, and Filtering Using
Reconfigurable Logic, pp. 187–194 (1996)

68. Kastrup, B., Bink, A., Hoogerbrugge, J.: Concise: A compiler-driven cpld-based instruc-
tion set accelerator. In: FCCM ’99: Proceedings of the Seventh Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, p. 92. IEEE Computer Society, Los
Alamitos (1999)

69. Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: The Molen processor prototype. In: FCCM
’04: Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 296–299. IEEE Computer Society, Los Alamitos (2004)

70. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems. In: MICRO 30: Proceedings of the
30th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 330–335. IEEE
Computer Society, Los Alamitos (1997)

71. Lee, M.H., Singh, H., Lu, G., Bagherzadeh, N., Kurdahi, F.J., Filho, E.M.C., Alves, V.C.:
Design and implementation of the morphosys reconfigurable computing processor. J. VLSI
Signal Process. Syst. 24(2/3), 147–164 (2000). doi:10.1023/A:1008189221436

72. Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., Amarasinghe, S.: Space-
time scheduling of instruction-level parallelism on a raw machine. SIGOPS Oper. Syst. Rev.
32(5), 46–57 (1998). doi:10.1145/384265.291018

73. Lee, W.A., Agarwal, L., Lee, T., Smith, A., Lam, E., Athanas, P., Ghosh, S.: Prism-ii compiler
and architecture (1993)

74. Lipasti, M.H., Wilkerson, C.B., Shen, J.P.: Value locality and load value prediction. In:
ASPLOS-VII: Proceedings of the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 138–147. ACM, New York
(1996). doi:10.1145/237090.237173

75. Lodi, A., Toma, M., Campi, F., Cappelli, A., Guerrieri, R.: A vliw processor with reconfig-
urable instruction set for embedded applications. IEEE J. Solid State Circuits 38(11), 1876–
1886 (2003)

76. Maheswaran, K., Akella, V.: Hazard-free implementation of the self-timed cell set in a xilinx
fpga. Tech. Rep., University of California (1994)

77. Marshall, A., Stansfield, T., Kostarnov, I., Vuillemin, J., Hutchings, B.: A reconfigurable
arithmetic array for multimedia applications. In: FPGA ’99: Proceedings of the 1999
ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays,
pp. 135–143. ACM, New York (1999). doi:10.1145/296399.296444

http://dx.doi.org/10.1145/370155.370535
http://dx.doi.org/10.1145/368434.368597
http://dx.doi.org/10.1109/TVLSI.2003.821545
http://dx.doi.org/10.1109/TVLSI.2003.821545
http://dx.doi.org/10.1023/A:1025699015398
http://dx.doi.org/10.1023/A:1025699015398
http://dx.doi.org/10.1023/A:1008189221436
http://dx.doi.org/10.1145/384265.291018
http://dx.doi.org/10.1145/237090.237173
http://dx.doi.org/10.1145/296399.296444

www.manaraa.com

92 3 Deployment of Reconfigurable Systems

78. Mei, B., Veredas, F.J., Masschelein, B.: Mapping an h.264/avc decoder onto the address
reconfigurable architecture. In: International Conference on Field Programmable Logic and
Applications, pp. 622–625 (2005). doi:10.1109/FPL.2005.1515799

79. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwerein, R.: ADRES: An archi-
tecture with tightly coupled VLIW processor and coarse-grained reconfigurable ma-
trix. In: Field-Programmable Logic and Applications. Lecture Notes in Computer Sci-
ence, vol. 2778, pp. 61–70. Springer, Berlin/Heidelberg (2003). doi:10.1007/b12007.
http://www.springerlink.com/content/03yt3xeh60r8971k/

80. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R., Mei, B., Vernalde, S., Verk-
est, D., De, H., Lauwerein, R.: Dresc: A retargetable compiler for coarse-grained reconfig-
urable architectures (2002)

81. Mirsky, E., DeHon, A.: Matrix: A reconfigurable computing architecture with configurable
instruction distribution and deployable resources. In: IEEE Symposium on FPGAs for Cus-
tom Computing Machines, pp. 157–166 (1996)

82. Miyamori, T., Olukotun, K.: Remarc (abstract): reconfigurable multimedia array coprocessor.
In: FPGA ’98: Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on
Field Programmable Gate Arrays, p. 261. ACM, New York (1998). doi:10.1145/275107.
275164

83. Miyamori, T., Olukotun, K.: Remarc: Reconfigurable multimedia array coprocessor. In:
IEICE Transactions on Information and Systems E82-D, pp. 389–397 (1998)

84. Panainte, E.M., Bertels, K., Vassiliadis, S.: The Molen compiler for reconfigurable proces-
sors. ACM Trans. Embed. Comput. Syst. 6(1), 6 (2007). doi:10.1145/1210268.1210274

85. Rupp, C.R., Landguth, M., Garverick, T., Gomersall, E., Holt, H., Arnold, J.M., Gokhale,
M.: The napa adaptive processing architecture. In: FCCM ’98: Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, p. 28. IEEE Computer Society,
Los Alamitos (1998)

86. Salefski, B., Caglar, L.: Re-configurable computing in wireless. In: DAC ’01: Proceedings
of the 38th Annual Design Automation Conference, pp. 178–183. ACM, New York (2001).
doi:10.1145/378239.378459

87. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Ranganathan, N., Burger, D.,
Keckler, S.W., McDonald, R.G., Moore, C.R.: Trips: A polymorphous architecture for ex-
ploiting ilp, tlp, and dlp. ACM Trans. Archit. Code Optim. 1(1), 62–93 (2004). doi:10.1145/
980152.980156

88. Singh, H., Lee, M.H., Lu, G., Kurdahi, F.J., Bagherzadeh, N.: Morphosys: A reconfigurable
architecture for multimedia applications. In: Workshop on Reconfigurable Computing at
PACT, pp. 134–139 (1998)

89. Singh, H., Lee, M.H., Lu, G., Bagherzadeh, N., Kurdahi, F.J., Filho, E.M.C.: Morphosys:
An integrated reconfigurable system for data-parallel and computation-intensive applica-
tions. IEEE Trans. Comput. 49(5), 465–481 (2000). doi:10.1109/12.859540

90. Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: Wavescalar. In: MICRO 36: Proceed-
ings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, p. 291.
IEEE Computer Society, Los Alamitos (2003)

91. Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K., Oskin,
M., Eggers, S.J.: The wavescalar architecture. ACM Trans. Comput. Syst. 25(2), 4 (2007).
doi:10.1145/1233307.1233308

92. Tatas, K., Siozios, K., Soudris, D.: A survey of existing fine-grain reconfigurable archi-
tectures and CAD tools. In: Fine- and Coarse-Grain Reconfigurable Computing, pp. 3–87.
Springer, Dordrecht (2007). http://www.springerlink.com/content/m561311j78506281/

93. Tau, E., Chen, D., Eslick, I., Brow, J.: A first generation dpga implementation. In: Proceed-
ings of the Third Canadian Workshop on Field-Programmable Devices, pp. 138–143 (1995)

94. Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H.,
Johnson, P., Lee, J.W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen, V.,
Frank, M., Amarasinghe, S., Agarwal, A.: The raw microprocessor: A computational fabric
for software circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002). doi:10.
1109/MM.2002.997877

http://dx.doi.org/10.1109/FPL.2005.1515799
http://dx.doi.org/10.1007/b12007
http://www.springerlink.com/content/03yt3xeh60r8971k/
http://dx.doi.org/10.1145/275107.275164
http://dx.doi.org/10.1145/275107.275164
http://dx.doi.org/10.1145/1210268.1210274
http://dx.doi.org/10.1145/378239.378459
http://dx.doi.org/10.1145/980152.980156
http://dx.doi.org/10.1145/980152.980156
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1145/1233307.1233308
http://www.springerlink.com/content/m561311j78506281/
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/MM.2002.997877

www.manaraa.com

References 93

95. Theodoridis, G., Soudris, D., Vassiliadis, S.: A survey of coarse-grain reconfigurable archi-
tectures and cad tools. In: Fine- and Coarse-Grain Reconfigurable Computing, pp. 89–149.
Springer, Dordrecht (2007). http://www.springerlink.com/content/j118u3m6m225q264/

96. Vassiliadis, N., Kavvadias, N., Theodoridis, G., Nikolaidis, S.: A risc architecture extended
by an efficient tightly coupled reconfigurable unit. In: International Workshop on Applied
Reconfigurable Computing (ARC), pp. 41–49. Springer, Berlin (2005)

97. Vassiliadis, S., Gaydadjiev, G., Bertels, K., Panainte, E.M.: The Molen programming
paradigm. In: Proceedings of the Third International Workshop on Systems, Architectures,
Modeling, and Simulation, pp. 1–10 (2003)

98. Vassiliadis, S., Wong, S., Cotofana, S.: The Molen rho-mu-coded processor. In: FPL ’01:
Proceedings of the 11th International Conference on Field-Programmable Logic and Appli-
cations, pp. 275–285. Springer, London (2001)

99. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte, E.M.: The
Molen polymorphic processor. IEEE Trans. Comput. 53(11), 1363–1375 (2004). doi:10.
1109/TC.2004.104

100. Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,
Finch, P., Barua, R., Babb, J., Amarasinghe, S., Agarwal, A.: Baring it all to software: Raw
machines. Computer 30(9), 86–93 (1997). doi:10.1109/2.612254

101. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.M., Tjiang, S.W.K.,
Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.: Suif: an infrastructure for
research on parallelizing and optimizing compilers. SIGPLAN Not. 29(12), 31–37 (1994).
doi:10.1145/193209.193217

102. Wirthlin, M.J.: A dynamic instruction set computer. In: FCCM ’95: Proceedings of the IEEE
Symposium on FPGA’s for Custom Computing Machines, p. 99. IEEE Computer Society,
Los Alamitos (1995)

103. Wirthlin, M.J., Hutchings, B.L., Gilson, K.L.: The nano processor: A low resource reconfig-
urable processor. In: Buell, D.A., Pocek, K.L. (eds.) IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 23–30. IEEE Computer Society, Los Alamitos (1994). citeseer.ist.
psu.edu/wirthlin94nano.html

104. Wittig, R.D., Chow, P.: Onechip: An fpga processor with reconfigurable logic. In: IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 126–135 (1995)

105. Ye, Z.A., Moshovos, A., Hauck, S., Banerjee, P.: Chimaera: a high-performance architec-
ture with a tightly-coupled reconfigurable functional unit. SIGARCH Comput. Archit. News
28(2), 225–235 (2000). doi:10.1145/342001.339687

106. Zhang, H., Prabhu, V., George, V., Wan, M., Benes, M., Abnous, A., Rabaey, J.: A 1-v het-
erogenous reconfigurable dsp ic for wireless baseband digital signal processing. IEEE J.
Solid State Circuits 35(11), 1697–1704 (2000)

http://www.springerlink.com/content/j118u3m6m225q264/
http://dx.doi.org/10.1109/TC.2004.104
http://dx.doi.org/10.1109/TC.2004.104
http://dx.doi.org/10.1109/2.612254
http://dx.doi.org/10.1145/193209.193217
http://citeseer.ist.psu.edu/wirthlin94nano.html
http://citeseer.ist.psu.edu/wirthlin94nano.html
http://dx.doi.org/10.1145/342001.339687

www.manaraa.com

Chapter 4
Dynamic Optimization Techniques

Abstract According to the discussion made at the end of the previous chapter, re-
configurable systems alone cannot deal with the high heterogeneous behavior of
recent applications. Hence, the only solution to cope with that is to use dynamic
optimization techniques, such as Binary Translation and reuse. The section about
Binary translation starts with an explanation on how it works. The main concepts
are clarified, as well as the main challenges that a binary translator mechanism must
handle to work properly. The section ends with a detailed view of some examples
of Binary Translation machines. The study on Reuse, in turn, covers diverse types:
instruction reuse, value prediction and the difference between them; basic block,
trace reuse and dynamic trace memoization.

4.1 Introduction

As it has been mentioned in the previous chapters, it is only by adding information
available at run time that reconfigurable logic will be able to optimize different
kernels of a given benchmark set. Any static solution will be limited by the tool set
or by the amount of extra hardware design required. Therefore, in this chapter, two
different techniques regarding dynamic optimization are analyzed: Trace Reuse and
Binary Translation.

4.2 Binary Translation

4.2.1 Main Motivations

As can be observed nowadays, the top seller processors belong to a family, meaning
that they are firmly connected to legacy ISAs. Some of them are more than 30 years
old (as is the case of the X86 family). Although this fact brings limitations in terms
of flexibility when designing a new architecture (meaning that potential increases

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_4, © Springer Science+Business Media B.V. 2010

95

http://dx.doi.org/10.1007/978-90-481-3913-2_4

www.manaraa.com

96 4 Dynamic Optimization Techniques

in performance are reduced), the greatest advantage is the possibility of reusing the
whole existing software base, mainly when this base owns a huge market share.
Moreover, porting the code sometimes can be very difficult. This way, the develop-
ment of new architectures that do not implement an existent ISA is very hard. That
is one of the main reasons why one cannot find a large number of competitors on
the processor market.

Let us consider the hypothesis of a new processor architecture with a totally dif-
ferent ISA appearing on the market. Existent applications would have to be rebuilt,
so they could be executed on these new machines, or to take advantage of their max-
imum processing capabilities. If the application is simple and programmed in some
standard language, the rebuilding process is usually also simple. For that, a native
compiler should be used. However, for complex applications, with large code sizes
and that need different tools to join all the small pieces, the rebuilding process may
be near to impossible. It is necessary to remember that operating systems and their
inherent complexity must be included in this set of existent software.

Several techniques have already been proposed to somehow solve this issue. The
first one is called Software Interpretation. The Software Interpreter reads each in-
struction, one at a time, from any given application that was previously written
for another architecture with a different ISA. Besides interpreting them (replicating
their behavior), the interpreters also have the role of maintaining the state behavior
as if the instructions were being executed on the reference architecture. However,
since they add an extra layer to perform the interpretation, they are not fast, or not as
fast as they could be. As main advantages, interpreters can handle some challenges
that will be studied later, such as self-modifying programs, programs with no clear
barrier between instruction and data code etc.

Another alternative is the use of Microcode [121]. The idea is very similar to
the one used with the software interpreter, however, it is done in hardware. There is
a mechanism responsible for decoding source instructions to the new architecture,
making use of a microcode ROM and a state machine. It is claimed in [108] that
such technique could not be used in RISC machines, since those machines would
not have a microcoded hardware layer. However, Intel has been using microcode to
execute the complex X86 instructions in a RISC core for a long time [129].

Finally, one can find the main topic of this section: Binary Translators (BT).
The main objective of BT is the same as the use of Software Interpretation or Mi-
crocode: to keep the porting process transparent to the user, so binary code previ-
ously compiled for another source architecture with a different ISA can be executed
on another one, supporting a different instruction set, with minimal effort. This way,
one can implement a different architecture executing the original ISA, breaking the
strong relationship between already written code and its ISA. The BT can be static
or dynamic, and can be implemented in software or hardware. This will be further
explained in details in the next section.

As can be observed in Fig. 4.1, according to [131], translated programs are faster
than interpreters or the use of microcode; however, binary translation is slower than
native compilers.

www.manaraa.com

4.2 Binary Translation 97

Fig. 4.1 Performance comparison between different approaches

Fig. 4.2 Binary Translation Process

4.2.2 Basic Concepts

The concept of binary translation [107, 108] is very ample and can be applied in
different levels. Basically, the Binary Translator is a system, which can be imple-
mented in hardware or software, responsible for analyzing the binary code of an
already compiled program. Then, some kind of transformation is done in the code,
with the purpose of keeping the software compatibility (the reuse of legacy code
without the need of recompilation, as illustrated in Fig. 4.2), to provide means to
enhance the performance, or even both. A translated binary program is a sequence
of instructions that belongs to a new architecture, and was previously translated from
another ISA. According to [108], in opposite to modern high level languages, the
semantics of binary code is usually well defined, so the translation is easier when
applied at that level. On the other hand, without the availability of the original source
code, a binary translation cannot perform some of the optimizations that a regular
compiler could.

www.manaraa.com

98 4 Dynamic Optimization Techniques

Still according to [108], there are three different kinds of binary translation:

• Emulator: interprets program instructions at run time. However, the transformed
instructions are not saved or cached for future reuse. As it can be observed, in op-
posite to [131], these authors consider Software Interpretation as a type of Binary
Translation.

• Dynamic Translator: besides interpreting the program, it saves previous transla-
tions to be used a next time, so that the overhead of translation and optimization
can be amortized over multiple executions. One example of dynamic translation
is just-in-time (JIT) compilers, as the ones used for Java execution [135].

• Static Translator: it does the job offline. Consequently, it has the opportunity
of more rigorous optimization. They can also use execution profiles previously
generated to achieve better results.

While in the emulator and dynamic translator approaches there are run-time over-
heads, since the analysis is done during program execution, static translators usu-
ally are based on a stand-alone tool that requires end-user involvement, being not as
transparent as the dynamic techniques.

Nevertheless, there are other concepts regarding Binary Translation, such as the
employed nomenclature [108]:

• Source architecture: The original (legacy) architecture from which translation oc-
curs;

• Target Architecture: The architecture to which translation occurs;
• Virtual Machine Monitor (VMM): the system responsible for controlling the bi-

nary translation mechanism when it is done at run-time;
• Translation Cache: The memory where the translations are stored. This cache is

not necessarily implemented in hardware.

Another concept intrinsically connected to binary translation is dynamic opti-
mization. While dynamic binary translation is JIT compilation of the binary code
from one architecture to another, dynamic optimization concerns the run-time im-
provement of the code. Usually, the general term Binary Translation is also applied
when both techniques are used together.

In [109] it is claimed that the use of object-oriented languages and other tech-
niques to facilitate software development limits the optimization possibilities of the
code, when considering static compiler analysis. Moreover, pre-compiled dynamic
libraries are very common (such as DLLs), so applying optimizations in the whole
software sometimes is just impossible. Nevertheless, there are limitations even when
considering the same family of processors having the same basic ISA. For instance,
let us consider a software written to be executed on the newest X86 ISA processor.
The MMX or SSE multimedia instructions could not be used if one wants to exe-
cute the software on the whole X86 family of processors. Earlier processor versions
that do not have these instructions implemented in their ISA could not execute the
application. One alternative would be using dynamic libraries or making available
different executable files. However, different versions of the same program must be
built. Therefore, still according to the same authors [109], the importance of dy-
namic optimization through BT increases as compilers will be extremely complex

www.manaraa.com

4.2 Binary Translation 99

and bring just modest gains in general purpose applications. Otherwise, they have
to be tailored for very specific classes of applications to bring meaningful gains.

Binary translation can also produce other effects in the future, following the ten-
dency of write once, run everywhere. For example, it is possible to use Binary Trans-
lation in order to perform transformations from different ISAs to a unique target
architecture, so all efforts for optimization could be targeted to just that hardware.

4.2.3 Challenges

The authors in [108] make an interesting claim: since all machines are based on the
Turing Model, any machine can be emulated on each other. As already discussed,
besides achieving some kind of binary portability, another objective of BT is to run
the translated code as efficiently as if it was running on the machine it was first
designed to be executed on. However, according to the same authors, there are some
challenges that must be dealt to achieve this objective:

4.2.3.1 Register Mapping

One of the basic roles of a BT mechanism is to map registers from the source to
the target architecture. However, there are cases where the target architecture has
less registers than the source, so some of them must be kept in memory. Memory
accesses are more costly, so the distribution must be well balanced. Moreover, some
architectures have state registers (for example, flags from the ALU or segmentation
registers). These state-registers of the source architecture must somehow also be
kept in the target architecture.

4.2.3.2 Memory Mapped I/O

This issue concerns the memory spaces that are mapped to I/O devices and that can
present side effects. For instance, referencing a given memory position can inject a
packet in the network, or change the status of an I/O device.

4.2.3.3 Atomic Instructions

In systems that run processes concurrently, it is very common to find some instruc-
tions that must be atomically executed in respect to memory. For example, a given
memory address must be “locked” during the execution of an instruction, so a sec-
ond processor could not access or modify it, handling some synchronizations issues.
Replicating this behavior can be complicated. Another problem is instructions that

www.manaraa.com

100 4 Dynamic Optimization Techniques

take more than one cycle to perform their functions. These instructions must be ex-
ecuted completely, meaning that they cannot be interrupted. This behavior must be
replicated in the target architecture.

On the other hand, in many cases, a given instruction that takes just one cy-
cle to be executed in the source architecture takes several cycles to be executed on
the target processor. In this case, the target processor cannot be interrupted until
the instruction is totally executed. This way, dealing with precise exceptions can
also become a problem. It can become even worse if one considers that after bi-
nary translation is applied, instructions could be reordered or even have their order
changed to improve performance.

4.2.3.4 Issues Related to the Code

Several issues are related to the code. The first one is when there is no clear bar-
rier between code and data, so it is harder to realize what parts can be modified or
protected. Self-modifying code is another problem. For example, a self-modifying
code changed itself, and an old version of this sequence is still cached. This means
that one needs to detect whether the code was changed, so it can be invalidated in
the translation cache. Furthermore, the code can try to check itself (to perform a
checksum, for instance). However, if the program was modified by the BT mecha-
nism, the checksum of the new version of the code will obviously not be right, since
that verification process was expecting the original code. One solution could be to
always keep a copy of the original program in a separated memory space.

4.2.3.5 OS Emulation

How to use the OS together with a BT mechanism depends on how the BT was im-
plemented. As it will be show in the examples, some BT mechanisms work above
the OS, so the OS knows about its existence, and sometimes even controls it. In
this case, the OS can execute both native and translated applications. When a legacy
code is detected, the translator is launched. The BT mechanism can be also found
below the OS. If that is the case, it could be possible to install the OS of the source
architecture and use it together with the source application in a totally transparent
process. This way, the entire legacy OS code of the source architecture (or its li-
braries) can be emulated using the Binary Translation mechanism.

4.2.4 Examples

Besides the JIT compiler, commented before, there are other examples of the differ-
ent types of Binary Translation mechanisms. The Hewlett-Packard Dynamo [109]

www.manaraa.com

4.2 Binary Translation 101

operates entirely at runtime in order to dynamically generate optimized native re-
translations of the running program’s hot spots. In fact, the BT itself is an optimiz-
ing software, previously compiled and executing on the target machine. It operates
transparently (any kind of interference from the user is not necessary) monitoring
program behavior in order to find hot spots to be optimized, using low-overhead
techniques. Then, this modified code is executed again when necessary. Operating
on HP-UX, Dynamo has a code size of less than 265 Kilobytes.

Another example of the same approach, but with a different purpose, is the Com-
paq’s FX!32 [111, 122], aimed to allow the execution of 32-bit x86 Windows ap-
plications on Alpha computers. There are other architectures that mix hardware and
software to perform BT. DAISY [114, 115], from IBM, is one of those. It uses the
PowerPC as source architecture and a special architecture based on a VLIW, named
DAISY VLIW, as target. It is important to point out that, in opposite to Dynamo,
which runs above the HPUX operating system, DAISY runs below its operating sys-
tem. This way, it can be considered even more transparent to the final user, in the
sense that one cannot identify it as a service or software running on the operating
system.

The Transmeta Crusoe [113] shares several similar elements with DAISY. The
significant difference is that Crusoe emulates an x86 system, while DAISY emu-
lates a PowerPC. Both perform full system emulation including not only application
code, but also operating systems and other privileged code. Furthermore, both use
an underlying VLIW chip specifically designed to support BT as target architecture,
aimed for high performance. There are also similarities regarding the optimization
process: code is first interpreted and profiled and, if a fragment turns out to be fre-
quently executed (in this case, more than 50 times), it is translated to native Crusoe
instructions. Both DAISY and Crusoe are illustrated in Fig. 4.3.

Aside from the different source architectures emulated, Crusoe and DAISY differ
in their intended use. DAISY is designed for use in servers and consequently is a
big machine capable of issuing 8 to 16 instructions per cycle, with gigabytes of
total memory. Given this large machine, the DAISY VMM emphasizes extraction of
parallelism when translating from PowerPC code. DAISY reserves 100 MB or more
for itself and its translations. Crusoe is aimed at low power and mobile applications
such as laptops and palmtops. The processor issues only 2 to 4 instructions per cycle,

Fig. 4.3 Daisy and
Transmeta Systems

www.manaraa.com

102 4 Dynamic Optimization Techniques

and has 64 to 128 MB of total memory in a typical system. Thus, Crusoe reserves
16 MB for itself and its translation. In benchmark tests, DAISY can complete the
equivalent of 3 to 4 PowerPC instructions per cycle. Transmeta has claimed that
the performance of a 667-MHz Crusoe TM5400 is about the same as a 500-MHz
Pentium III [130], but at a fraction of the power dissipated by the Intel machine.
More details on these architectures and others will be discussed in the following
sub-sections.

4.2.4.1 DAISY

DAISY (Dynamically Architected Instruction Set from Yorktown) system aims to
execute PowerPC code on an eight-issue VLIW processor [114, 115, 120]. This
processor is a 32-bit load-store architecture with 256-bit VLIW instructions. It has
64 registers of 32 bits each and 16 conditions registers (4 bits, each). A VLIW
instruction can have up to 8 operations with three operands each, besides a control
header.

Figure 4.4 shows how DAISY system is composed. The DAISY VMM code is
stored in the DAISY flash ROM. When the system powers up, the VMM code is
copied to the DAISY portion of memory, and the VLIW machine starts executing
it. After the VMM (Virtual Machine Monitor) software initializes itself and the sys-
tem, it begins translating the code of the PowerPC flash ROM to be executed on
the VLIW processor. Then, this translated firmware loads the operating system (in
this case, AIX Unix), which DAISY likewise translates and executes. After that,
any application that is executed on the AIX can benefit from the binary translation
mechanism and the VLIW processor.

This way, in the point of view of the PowerPC instructions, the BT process is
totally transparent. The basic idea of the VMM is that it implements a virtual Pow-
erPC architecture, and it is not visible to the software that is running on it. The
VMM is part of the firmware, acting on the entire instruction set, including any kind
of system level operation. This way, in opposite to other BT systems, DAISY is not a

Fig. 4.4 DAISY system

www.manaraa.com

4.2 Binary Translation 103

Fig. 4.5 DAISY Translation Process

part or service of the operating system running on the target machine. Consequently,
DAISY can even boot an OS previously compiled for PowerPC systems.

The first time the VMM finds a code fragment of PowerPC instructions, these are
interpreted. During the interpretation, the code is also profiled: this data will be used
later for code generation. Considering that the purpose of the system is to achieve
the maximum possible performance, the decision on whether the fragment is worth
to be translated or not relies on how many times it has already been interpreted, its
ILP and number of operations. After translation, the code is kept in the translation
cache. The next time the same code fragment is found, it is directly executed, and
no translation is required (there is an exception case, when an already translated part
of the code was taken off memory because of space restrictions). The advantage of
using a threshold before actual code translation is that rarely used code (such as in
the initialization process) will not be translated, since the translation itself has costs
associated to it.

The basic translation units are called trees. They have only one entry point, and
multiple exit ones. The end of a tree generation occurs when a backward branch is
found (typical of loops), or when subroutine boundaries are found. The tree regions
are stored in the translation cache, a memory area only accessible to the DAISY
VMM, being not visible to the system running above it. In order to facilitate the bi-
nary translation process, the DAISY processor has a special instruction called LVIA
(load VLIW instruction address). It is responsible for loading VLIW instructions
that correspond to a chunk of PowerPC code. If the code has already been trans-
lated and is located in memory, the instruction returns the beginning of the VLIW
code. Otherwise, it calls the VMM translator, so it can translate the PowerPC code
to VLIW instructions, before proper execution. These steps are demonstrated in
Fig. 4.5.

Besides VLIW instruction scheduling, the DAISY BT system performs a variety
of optimizations, such as ILP scheduling with data and control speculation, loop
unrolling, alias analysis, load-store telescoping, dead code elimination and others,
as reported in [116].

4.2.4.2 VEST

The VEST system aims to translate VAX and Ultrix MIPS images to be executed on
Alpha AXP computers. Besides ensuring binary reusability, the mechanism can also

www.manaraa.com

104 4 Dynamic Optimization Techniques

show speedups when comparing to the non-translated code. The authors in [131]
worked on the hypothesis of using an interpreter, but they gave up once they realized
that performance would be very poor. They also found that an implementation using
microcode would be inconsistent with the Alpha RISC design.

The transformation process is static and completely automatic. It is able to re-
produce the behavior of complex instructions, atomicity (for the execution of mul-
tithread applications), and also arithmetic traps and error handlers. If for any reason
translation is not possible, an explicit error message is given, with details on what
happened.

The static translation from a VAX image involves two phases: analyzing the VAX
code and the proper translation. The translated image runs with the assistance of
a special environment. As the Alpha processor has more registers than the VAX,
register mapping cannot be considered as a problem. Alpha has separated registers
for integer and floating point operations, while in VAX there is no such distinction.
This way, register mapping depends on the operation. For instance, the R1 of a VAX
instruction can be mapped to the integer or floating point register sets of Alpha,
depending on what operation that instruction performs. VAX condition bits are also
mapped to Alpha registers.

Moreover, depending on the operation, there is tradeoff concerning performance
and accuracy. For instance, it is possible to emulate the original 56-bit mantissa
provided by the VAX in Alpha by software, or to use the 53-bit mantissa that is
supported natively by hardware in Alpha, so it will execute faster but losing some
precision. Nevertheless, there are images that cannot be translated, such as the ones
that present specific cases of exception handlers, the use of undocumented system
services, and software that depends on the exact memory management behavior to
work properly.

As already stated, the source code can also originate from the Ultrix MIPS. This
process is simpler than the VAX translation, since both source and target architec-
tures are RISC machines. This way, many instructions can be translated on a one-
to-one basis. The translation process follows two basic steps: the program is first
parsed, and a graph is built; then, the code generator is called. The code generator
is also responsible for register mapping and basic blocks processing. As there are
not enough registers in Alpha for directing mapping, the most used source registers
are kept in the target machine register file, while the others must be swapped from
memory to the register bank and vice-versa. A special spill algorithm is used in or-
der to keep the most used MIPS registers in the Alpha register bank. Some classes
of code cannot be translated, such as those applications that use privileged opcodes
or system calls.

Some optimizations are also performed. For example, at each subroutine call, the
tool uses a pattern-matching algorithm in order to find if that subroutine corresponds
to one located in a library (for instance, strcpy). If it is found, the call is replaced with
a canned (and optimized) routine to be executed on the Alpha. Moreover, common
MIPS sequences that, even though crossing basic block boundaries in MIPS, can be
compressed to be executed within a single basic block in Alpha (such as the min and
max functions), are also replaced with the correspondent optimized ones.

www.manaraa.com

4.2 Binary Translation 105

4.2.4.3 DYNAMO

The main purpose of Dynamo is dynamic optimization: it does not translate code
from a source to another target architecture, but instead it optimizes a native in-
struction stream. The system is implemented entirely in software. Dynamo is totally
transparent, since it does not depend on any kind of programmer assistance, such
as user annotation or binary instrumentation. Moreover, no special compiler, OS or
hardware support are required. This way, even legacy or statically optimized native
binaries can be accelerated by Dynamo. A prototype was presented in [109], run-
ning on an HP PA-8000 processor, under the HPUX 10.20 OS. As Dynamo system
focuses on run-time optimizations, it has the possibility of applying certain opti-
mization techniques that would be hard for a static compiler to exploit.

Dynamo observes the running application behavior and starts the translation only
when a hot spot is found. Start points for a candidate are backward taken branches,
since this instruction sequence probably belongs to a loop. The exit points are
branches. Each time the same candidate is found again, a counter responsible for
it is incremented. When a threshold is exceeded, code generation begins. Then, Dy-
namo generates an optimized version of that sequence of instructions and saves it
in the translation cache (called fragment cache). Dynamo only acts at that moment,
since interpreting code that would not be optimized would slow down performance
(Dynamo itself is a program running on the processor). When the same sequence is
found again, the optimized code will be fetched from the fragment cache to be exe-
cuted directly on the processor (the BT mechanism will not work at that moment).
When execution finishes, Dynamo starts the whole process again. This way, the
fragment cache is gradually filled with optimized application code as the execution
proceeds.

Dynamo relies on the idea that a small portion of code is responsible for the
majority of the application’s execution time, so it is possible to benefit from the
repeated reuse of optimized sequences found in the fragment cache. The proto-
type shows that, using Dynamo, the average performance gains considering the
SpecInt95 benchmark compiled with -O is comparable to same benchmark stati-
cally compiled using -O4 (that includes extra optimizations to the specific proces-
sor), running without Dynamo.

The optimizations performed by the system are based on redundancy removal,
such as branch and assignment eliminations and load removal. Other optimizations
such as copy and constant propagation, strength reduction, loop invariant code mo-
tion and unrolling are also done.

Dynamo also tries to keep the translation memory occupation as low as possible,
since there is the concern of maintaining the fragments in the cache and TLB. This
way, there is a flushing algorithm that acts when the memory space becomes large
enough to present a potential performance decrease.

Dynamo has also the concern of signal handling. Asynchronous signals are
treated differently from synchronous. When the former kind arrives, it is put in a
queue waiting until the fragment being executed at that moment finishes. The latter
case, however, is more complex, since synchronous signals cannot be postponed.

www.manaraa.com

106 4 Dynamic Optimization Techniques

Therefore, the implemented prototype has two kinds of code optimization: conser-
vative and aggressive. The conservative is used when the treatment of synchronous
signals is necessary. Although they not present as much performance improvements
as the aggressive type, the conservative approach allows precise contexts to be con-
structed, so the incoming signal can be appropriately handled.

4.2.4.4 Transmeta Crusoe

Transmeta Crusoe [113] executes X86 instructions on a native VLIW microproces-
sor using a software layer, called Code Morphing Software (CMS). Each instruc-
tion (molecule) of the VLIW processor can issue two or four RISC-like operations
(atoms) to the functional units (FUs). Five FUs are available: two ALUs, a floating
point unit, one memory and one branch units. Moreover, the processor has a set of
64 integer and 32 floating point registers.

The CMS is comprised of an interpreter, a dynamic binary translator, an opti-
mizer, and a runtime system. The CMS has several objectives to accomplish so it
can execute x86 instructions correctly. Besides implementing the whole instruction
set and the architectural registers, it must handle memory mapped I/O and complete
exception behavior. Furthermore, the system must be prepared to execute any kind
of OS, so it cannot be tailored to a specific one. CMS must be able even to execute
BIOS code. Moreover, as the x86 is a general purpose system, the CMS also has to
execute with a satisfactory performance diverse programs with different behaviors,
and handle things such as self-modifying code.

The role of the translator is to decode x86 instructions, select regions for transla-
tion, analyze the code and generate the native VLIW code, optimizing and schedul-
ing it. All these tasks make it the most complex component of the Code Morph-
ing System. The optimizer, besides performing architecture specific optimizations,
schedules the VLIW code in a trace with a single-entry point and multiple exit ones
(so it is not limited to basic blocks boundaries). The CMS has also a runtime system
responsible for handling devices, interrupts, exceptions, power management and the
translation cache garbage collector.

Figure 4.6 illustrates the translation process. While interpreting x86 instructions,
data on execution frequency, branch directions and memory mapped I/O are gath-
ered. When a certain threshold is achieved, then the translator comes to action, pro-
ducing native VLIW code for that x86 sequence. The translated sequence is stored
in the translation cache, and it will be reused next time the same x86 sequence is
found, unless that entry in the translation cache was invalidated for some reason.
The exit of the branch at the end of each translated block calls a lookup routine
(represented by “no chain” in the figure), which can transfer the control either to
another translation block or back to the interpreter, so it can continue translating
x86 code. If the control is transferred to another piece of translation, the branch op-
eration is modified so it goes directly there. This process is called chaining. This
way, frequently executed regions will be executed entirely on the VLIW processor,
avoiding some of the delays caused by branch instructions.

www.manaraa.com

4.2 Binary Translation 107

Fig. 4.6 CMS Translation Process

The CMS also supports speculation in the sense that it makes speculative assump-
tions during the translation, such as the use of memory disambiguation. However,
if such assumptions are proven false during execution, they must be handled prop-
erly, otherwise incorrect results would be generated. For that, the register set that
maps the x86 registers is shadowed, so the VLIW instructions (atoms) work only on
the copy of the actual register set. The commit will happen when the execution of
that piece of translated code comes to the end. If some exception condition occurs
(for instance, a failure in one of the translation assumptions), the runtime system is
responsible for rolling back the context to the last commit point (the operations of
commit and rollback are also applied to memory operations). Then, starting from
that point, the CMS starts interpreting x86 instructions corresponding to that excep-
tion, executing the original code in order and treating exceptions when necessary.
When exceptions occur repeatedly for a certain chunk of translated code, the CMS
generates a more conservative translation trying to diminish the number of excep-
tions.

4.2.4.5 FX!32

The main goal of FX!32 is to allow transparent execution of native x86 Win32 ap-
plications on Alpha Systems [111, 122]. Albeit being transparent to the user, the

www.manaraa.com

108 4 Dynamic Optimization Techniques

Fig. 4.7 FX!32 System

system offers a graphical interface so the user can monitor status and manage re-
sources. For instance, this interface informs which parts are the most executed, and
which ones are not important. The system is illustrated in Fig. 4.7.

The first time an x86 application is executed, it is just interpreted: the FX!32 has
no knowledge about the application at all. However, together with this interpretation,
an execution profile is generated. The environment is also responsible for translat-
ing the code to native instructions using a background optimizer with the generated
profile information. This way, the next time the same application is executed, native
Alpha code is executed instead of the source x86 for that application. The process
of generating native Alpha code is repeated several times until there is stabilization
in the profile, so that sufficient performance gains are achieved. According to the
authors, this occurs after two or three iterations, indicating that almost all routines
were translated. Then, the profile of that image is taken off from the background
optimizer list. This way, the first execution of an x86 application will be slow. In the
next ones, as the majority of the most used executed code will be already translated
to Alpha instructions, performance will improve. It is claimed that, after code trans-
lation, gains of up 10 times in performance are achieved when comparing to simple
interpretation.

These translated code parts remain in a database provided by the FX!32 system,
so they can be accessed next time the x86 application is executed. Translated images
are standard DLLs, which are loaded by the Alpha native OS loader (Windows NT).
Execution of translated and non-translated code co-exist. While the translated code
is executed directly, non-translated is interpreted and profiled (for future translation,
if the system decides it is worth to), as already explained. A number of transfor-
mations must be done in the code to guarantee correctness of execution between
both codes. For instance, the way routines are called is different comparing x86 and
Alpha systems (the former use the stack while Alpha uses registers for parameter
passing). The translator acts on larger units than basic blocks. According to the au-
thors, the granularity of the translation approximates to the size and structure of a
routine.

The server is responsible for coordinating the interface and actions of both inter-
preter and optimizer. Certain parameters of the server can be configured by the user.

www.manaraa.com

4.3 Reuse 109

After an x86 program finishes its execution and is unloaded, the server is responsi-
ble for merging the new profile information with the old one. Maybe certain parts
of code that were not analyzed before require further optimizations.

Launching an X86 application is responsibility of the transparency agent. If there
is a call specifying that the process is based on x86 instructions, the transparent
agent invokes the FX!32 environment to execute that image. The FX!32 can be
executed without any kind of special privileges (although they are necessary when
installing the system).

4.3 Reuse

This section discusses dynamic techniques that rely on a very basic principle: parts
of the code are repeated during the lifetime of a program execution. Taking advan-
tage of that, such approaches somehow cache the results of previous operations (that
can be instructions, basic blocks, or traces) so they can be used again the next time
they are found. The next subsections go into details about such techniques, present-
ing their principles, basic functioning, performance potential, and discussing the
viability of actual hardware implementation.

4.3.1 Instruction Reuse

The instruction reuse approach [132–134] relies on the concept of repetition. In
[133], the idea of repetition is better clarified. The most general case of repetition is
when there are instances of an instruction that appear several times during the pro-
gram execution with the same input operands and always generating the same result.
However, there are cases that the result will be the same even if the input operands
are not: a compare instruction can present such behavior. On the other hand, a load
instruction can give as result a different value even if its input operands are repeated
through time. The Instruction reuse technique only considers the simplest and gen-
eral case, which is the first case commented above.

Still according to the same article, there are three potential sources of instruc-
tion repeatability. The first one is a consequence of the repetition of the input data
being processed by a given program. For instance, programs that manipulate text
can find repeated sequences of characters (such as spaces or words) during the pro-
cessing. The same can be considered for programs that work on images. Loops and
functions are the second source. For example, instructions that belong to a given
loop are constantly repeated even if the processed data is different between multi-
ple interactions: a counter always must be incremented, and a comparison is always
performed in order to figure if the loop must continue or not, etc. Finally, there are
data structures found in the program that involve repeated accesses to their elements,
meaning repeated processing.

www.manaraa.com

110 4 Dynamic Optimization Techniques

Fig. 4.8 Instruction reuse in a typical processor

The main principle of instruction reuse is that if an instruction with the same
operands is repeated a large number of times during the execution of a program,
instead of executing it again using a functional unit, the result of this instruction is
fetched from a special memory. This result was obtained from previous computa-
tions of the very same instruction. In more details, it works as follows: the first time
a given instruction is executed, its results are stored in the Reuse Buffer (RB). The
entry is indexed by its Program Counter (PC). When the same PC is found again,
the entry indexed by that PC is fetched from the RB. This is done while the actual
instruction is fetched from memory. The results of the reused instructions will only
be written back after passing the validity test done during the decode stage. This
test makes sure that the actual instruction would have the same input operands as
the one which result was read from the RB, since at the time the RB was accessed,
the actual input operands for the current incoming instruction were not ready yet.
According to the authors, such approach can be conservative in the sense that if in-
put operands of a given instruction are not ready at the time of reuse verification,
then they will not be reused at all. As already commented, instructions that can pro-
duce the same result even with different inputs, such as loads, are also not reused.
A typical pipeline with instruction reuse hardware is shown in Fig. 4.8.

There are advantages when using this technique: instructions with larger delays
(such as multiplications) can be completed faster; data dependent instructions can be
reused at the same time; and the path of reused instructions has two pipeline stages
less than if they were executed on the processor. Additionally, there are secondary
positive effects regarding processor resources, such as freeing functional units, slots
in the reservation stations and in the reorder buffer, the reduction of the instruction
fetch and data bandwidth (fewer accesses in the register bank and in the memory).
These effects potentially increase the possibility of executing additional instructions,
if there is still ILP available.

4.3.2 Value Prediction

Value prediction (VP) [117, 118, 125] is very similar to instruction reuse. However,
the technique is speculative in the sense that it predicts values for the input operands

www.manaraa.com

4.3 Reuse 111

Fig. 4.9 Value prediction

before they are ready. The second difference is that instructions predicted need to
be actually executed later so the prediction can be verified (instructions reused are
never really executed). Figure 4.9 illustrates VP. The key difference between them
is that IR verifies the validity of the results before using them (early validation),
while VP uses the results speculatively and verifies them later (late validation). Due
to these differences, the two techniques vary in the amount of redundancy they can
capture, and the way they interact with other microarchitectural features.

The value prediction technique can be viewed as an extension of the work on load
value prediction (LVP) [126], where just that type of instructions was considered.

The predictions are obtained from the Value Prediction Table (VPT), which is
implemented in hardware. As the input values are predicted, results can become
available before inputs are ready. When the correct values become available later,
after actual instruction execution, they are compared to the speculated results. If
they are wrong, instructions that used the wrong operands must be re-executed.
If the speculation was right, nothing is done and those instructions were executed
earlier than they should, bringing performance advantages. The same way it happens
with instruction reuse, VP allows data dependent instructions to be completed at the
same time, potentially increasing the ILP. Usually IR reduces resource contention
(functional units, data cache etc), while on the other hand, VP always increases
contention, since predicted instructions always need to be re-executed.

4.3.3 Block Reuse

In [123, 124] another technique is presented, with the purpose of reusing basic
blocks (a sequence of instructions with a single entry and single exit points). The
authors investigated the input and output values of the basic blocks (BB) and found
that they could extend the value prediction and instruction reuse techniques to a
coarser granularity, so the performance gains would be larger.

For each basic block, there are the upward-exposed inputs, which are the values
that a given basic block will compute, and the live outputs, which are the results
that will be actually used in the future (they will not be produced and be written by

www.manaraa.com

112 4 Dynamic Optimization Techniques

Fig. 4.10 An entry in the BHB

another operation without being used, for instance). This process is done with com-
piler assistance: GCC is responsible for marking dead register outputs. The same
way instruction reuse works, the next time a basic block is found, and if the current
input operands for that basic block are the same as the previous execution, the ex-
ecution of the whole set of instructions of that basic block is skipped and the live
output values are fetched. The input operands are composed of register and memory
references. The basic block boundaries are determined at run-time during program
execution. An entry point is any instruction after a branch, subroutine call or return.
A branch instruction marks an exit point. If an entry point is identified in the mid-
dle of a previously found basic block, it is split it two separate basic blocks. The
reuse information is stored in the Block History Buffer (BHB). As can be observed
in Fig. 4.10, each BHB entry contains 6 fields. The Tag stores the starting address
of a basic block. The Reg-In field is divided in several subfields, used to maintain
the register references and values of the input context. The Reg-Out has the same
purpose, but for the output context. Mem-In and Mem-Out fields are also divided
in subentries. Each subentry contains the program counter relative to the instruction
that makes the memory access, the memory address, the actual data value and a bit
indicating if that entry is being used or not. Finally, the Next Block field is respon-
sible for keeping the address of the basic block that follows the current, if there is
also an entry for it in the BHB. The Simplescalar Toolset [110] was employed for
this case study. It simulates a MIPS-like processor, using a configuration with four
integer ALUs, one integer multiply/divide unit, and the same number of functional
units for floating points computation. It is capable of issuing and committing up to
four instructions per cycle. The resulting speedup values range from 1.01 to 1.37,
with an average of 1.15. The benchmarks were compiled with the GCC O2 level of
optimization.

4.3.4 Trace Reuse

The idea of trace reuse [119] extends the previous approach, in the sense that it
is applied to a group of instructions (called of trace by the authors), as illustrated
in Fig. 4.11. In fact, the authors classify Basic Block Reuse as a particular case
of trace-level reuse. Trace is more general, since it can exploit larger sequences of
instructions, such as entire subroutines or complex loops.

As the other techniques, trace reuse is based on the input and output contexts.
A context is composed of the program counter, registers and memory addresses.
Trace reuse works as follows: for a given sequence of instructions, the context of
the processor, considering the first instruction of this sequence, is saved. Then, the

www.manaraa.com

4.3 Reuse 113

Fig. 4.11 The trace reuse approach

Fig. 4.12 A RTM entry

output context, which is the result of the whole set of instructions that belongs to that
sequence, is also saved, after this sequence was normally executed by the processor.
After that, each time that the first instruction of this sequence is sent for execution
again, the processor state is updated with the output context fetched from a special
memory, avoiding the execution of that trace on the processor. This memory is called
Reuse Trace Memory (RTM).

Each entry of the RTM is illustrated in Fig. 4.12. These entries are indexed by
the PC. Besides the initial PC, each RTM entry is composed of register and memory
references and their contents before and after trace execution. Each entry has also
the next PC, pointing to the next instruction that should be executed after the trace
was reused.

The process of finding which traces should be reused is done dynamically while
program is executed. One proposed approach for identifying a trace is to classify
instructions as reusable or not. The trace finishes when a non-reusable instruction
is found and begins soon after a reusable one is encountered. Another possibility
is to use fixed length traces. The size of the trace does not directly influences on
the RTM entry, since the instructions themselves are not saved, so the trace size
cannot be considered as a limitation. Each trace reuse operation has a latency (since
the RTM must be accessed). This way, as more instructions a trace has, the more

www.manaraa.com

114 4 Dynamic Optimization Techniques

efficient it will probably be. The total time spent to reuse a given sequence is called
reuse latency. It involves the RTM access, input comparisons and output write backs.

The results presented are very promising. For instance, considering a 256-entry
instruction window, infinite history tables and a reuse latency of 1 cycle, a speed-
up of 3.6 is shown, on average. However, these results can only be achieved when
considering optimal resources or ideal assumptions. The minimum table size evalu-
ated in the referred paper has 512 entries. This size would imply in a huge memory
footprint, even for nowadays on die cache implementations. Moreover, it seems that
the authors assume that the access in the table takes only one cycle, which is very
optimistic when considering the minimum size (512 entries), and almost impossible
to be implemented with 256k entries (the maximum proposed).

The authors also implemented three different scheduling policies. Although it
is not clearly stated on the paper, it is very likely that these policies consider an
infinite window size of instructions to be analyzed. Furthermore, the scheduling
is done by some kind of oracle, which means that always the best composition of
traces is considered to be saved in the special memory. It is important to stand out
that defining the best policy for scheduling these instructions can be a very complex
job to be done: multiples instructions can compose multiple traces and finding the
best combination demands a huge computational effort, which is very hard to be
executed on the fly.

This way, the study lacks of realistic assumptions that should include at same
time: a finite realistic window size, smaller RTM sizes with different and larger
delays, less registers and memory accesses allowed per cycle; a study about the
costs of the scheduling algorithm using a finite window; the costs of comparing
registers and memory values with the current trace context etc.

4.3.5 Dynamic Trace Memoization and RST

In [112] the authors presented a technique called Dynamic Trace Memoization,
which uses memoization tables in order to detect, at real time, traces that can be
potentially reused. The technique is very similar to trace reuse, however, it presents
a more detailed mechanism on how to perform the job, and an analysis on the hard-
ware costs and different algorithms to perform the task. Traces are built from re-
dundant sequences of instructions. Two tables are used for the memoization mecha-
nism: Memo Table G (Global Memoization Table), responsible for keeping isolated
instructions; and Memo Table T (Trace Memoization Table), which holds traces.

The entries in the Memo Table G have the PC address of the instruction, operand
values, instruction identification (such as the one informing if it is a branch or
jump), among others. Each dynamic instruction can be classified in two ways: re-
dundant or not. Non-supported instructions such as loads and stores are tagged as
non-redundant.

For the current incoming instruction, a search is done in the Memo Table G in or-
der to figure if a match occurs. If it is positive, a comparison with the input operators

www.manaraa.com

References 115

is done. If the input operands are the same, the instruction is tagged as redundant.
Otherwise, a new entry for that instruction and input operands is created in the ta-
ble, and the instruction is classified as non-redundant. The process is repeated until
a non-redundant instruction is found. From this information, an entry in the Memo
Table T is created. An entry in that table has information such as initial and final
PCs, input and output operands etc. A Memo Table T may have multiple instances
of the same traces but with a different input contexts.

In [128] this approach was extended in order to support speculative execution.
In [127] the technique is combined with value prediction and restricted hardware
resources, reducing the number of trace candidates and the size of their contexts,
achieving a speedup of 1.21, on average. The basic concept of this approach (RST -
Reuse through Speculation on Traces) is to speculate inputs values of a trace when
they are not available at the time the trace needs to be reused. This way, RST com-
bines both value prediction and trace reuse approaches. When a trace is specula-
tively reused, the output values are sent to the commit stage. Therefore, Dispatch,
Issue and Execution stages are bypassed for the whole sequence of instructions that
compose that trace. Hence, by using RST one can alleviate the pressure on other sys-
tem resources, such as functional units. As the study extended the work done about
DTM, the same Memo Tables G and T were employed. Various experiments were
performed: trace reuse with and without speculation, and DTM supporting loads
and stores. As in DTM, it is possible to have more than one entry for a given trace.
However, it has to be decided which one will be chosen for reuse and speculation.
The selection is based on an LRU list.

In this chapter, dynamic techniques used in the GPP market have been presented.
In the sequel, how these techniques can be used with the reconfigurable fabric are
discussed, so that it can adapt itself to cope with different kernels at runtime, while
still sustaining binary compatibility.

References

107. Altman, E.R., Ebcioğlu, K., Gschwind, M., Sathaye, S.: Advances and future challenges in
binary—translation and optimization. In: Proc. of the IEEE, pp. 1710–1722 (2001)

108. Altman, E.R., Kaeli, D.R., Sheffer, Y.: Welcome to the opportunities of binary translation.
IEEE Comput. 33(3), 40–45 (2000)

109. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimization sys-
tem. In: PLDI’00: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 1–12. ACM, New York (2000). doi:10.1145/
349299.349303

110. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. SIGARCH Comput. Archit.
News 25(3), 13–25 (1997). doi:10.1145/268806.268810

111. Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N., Tye, T., Bharadwaj, S.,
Yates, J.: Fx!32 a profile-directed binary translator. IEEE Micro 18(2), 56–64 (1998).
doi:10.1109/40.671403

112. Costa, A.T.D., Franca, F.M., Filho, E.M.C.: The dynamic trace memoization reuse technique.
In: 9th PACT, 2000, IEEE CS, pp. 92–99 (2000)

http://dx.doi.org/10.1145/349299.349303
http://dx.doi.org/10.1145/349299.349303
http://dx.doi.org/10.1145/268806.268810
http://dx.doi.org/10.1109/40.671403

www.manaraa.com

116 4 Dynamic Optimization Techniques

113. Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.:
The transmeta code morphing™ software: using speculation, recovery, and adaptive retrans-
lation to address real-life challenges. In: CGO’03: Proceedings of the International Sympo-
sium on Code Generation and Optimization, pp. 15–24. IEEE Computer Society, Los Alami-
tos (2003)

114. Ebcioğlu, K., Altman, E., Gschwind, M., Sathaye, S.: Dynamic binary translation and opti-
mization. IEEE Trans. Comput. 50(6), 529–548 (2001). doi:10.1109/12.931892

115. Ebcioğlu, K., Fritts, J., Kosonocky, S., Gschwind, M., Altman, E., Kailas, K., Brigh, T.:
An eight issue tree-vliw processor for dynamic binary translation. In: ICCD’98: Proceedings
of the International Conference on Computer Design, p. 488. IEEE Computer Society, Los
Alamitos (1998)

116. Ebcioğlu, K., Altman, E.R.: Daisy: dynamic compilation for 100 architectural compatibility.
In: ISCA’97: Proceedings of the 24th Annual International Symposium on Computer Archi-
tecture, pp. 26–37. ACM, New York (1997)

117. Gabbay, F., Gabbay, F.: Speculative execution based on value prediction. Tech. Rep., EE
Department TR 1080, Technion–Israel Institute of Technology (1996)

118. Gabbay, F., Mendelson, A.: Using value prediction to increase the power of speculative ex-
ecution hardware. ACM Trans. Comput. Syst. 16(3), 234–270 (1998). doi:10.1145/290409.
290411

119. Gonzalez, A., Tubella, J., Molina, C.: Trace-level reuse. In: ICPP’99: Proceedings of the
1999 International Conference on Parallel Processing, p. 30. IEEE Computer Society, Los
Alamitos (1999)

120. Gschwind, M., Ebcioğlu, K., Altman, E., Sathaye, S.: Binary translation and architecture
convergence issues for IBM system/390. In: ICS ’00: Proceedings of the 14th Interna-
tional Conference on Supercomputing, pp. 336–347. ACM, New York (2000). doi:10.1145/
335231.335264

121. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn.
Morgan Kaufmann, San Mateo (2006)

122. Hookway, R.J., Herdeg, M.A.: Digital fx!32: combining emulation and binary translation.
Digit. Tech. J. 9(1), 3–12 (1997)

123. Huang, J., Lilja, D.: Exploiting basic block value locality with block reuse. In: HPCA’99:
Proceedings of the 5th International Symposium on High Performance Computer Architec-
ture, p. 106. IEEE Computer Society, Los Alamitos (1999)

124. Huang, J., Lilja, D.J.: Extending value reuse to basic blocks with compiler support. IEEE
Trans. Comput. 49(4), 331–347 (2000). doi:10.1109/12.844346

125. Lipasti, M.H., Shen, J.P.: Exceeding the dataflow limit via value prediction. In: MICRO 29:
Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture,
pp. 226–237. IEEE Computer Society, Los Alamitos (1996)

126. Lipasti, M.H., Wilkerson, C.B., Shen, J.P.: Value locality and load value prediction. In:
ASPLOS-VII: Proceedings of the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 138–147. ACM, New York
(1996). doi:10.1145/237090.237173

127. Pilla, M.L., Childers, B.R., da Costa, A.T., Franca, F.M.G., Navaux, P.O.A.: A specula-
tive trace reuse architecture with reduced hardware requirements. In: SBAC-PAD ’06: Pro-
ceedings of the 18th International Symposium on Computer Architecture and High Perfor-
mance Computing, pp. 47–54. IEEE Computer Society, Los Alamitos (2006). doi:10.1109/
SBAC-PAD.2006.7

128. Pilla, M.L., da Costa, A.T., França, F.M.G., Childers, B.R., Soffa, M.L.: The limits of spec-
ulative trace reuse on deeply pipelined processors. In: SBAC-PAD’03: Proceedings of the
15th Symposium on Computer Architecture and High Performance Computing, p. 36. IEEE
Computer Society, Los Alamitos (2003)

129. Sager, D., Group, D.P., Corp, I.: The microarchitecture of the Pentium 4 processor. Intel
Technol. J. 1, 2001 (2001)

130. Shankland, S.: Transmeta shoots for 700 MHz with new chip. In: CNET News (2000)

http://dx.doi.org/10.1109/12.931892
http://dx.doi.org/10.1145/290409.290411
http://dx.doi.org/10.1145/290409.290411
http://dx.doi.org/10.1145/335231.335264
http://dx.doi.org/10.1145/335231.335264
http://dx.doi.org/10.1109/12.844346
http://dx.doi.org/10.1145/237090.237173
http://dx.doi.org/10.1109/SBAC-PAD.2006.7
http://dx.doi.org/10.1109/SBAC-PAD.2006.7

www.manaraa.com

References 117

131. Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary translation. Com-
mun. ACM 36(2), 69–81 (1993). doi:10.1145/151220.151227

132. Sodani, A., Sohi, G.S.: Dynamic instruction reuse. SIGARCH Comput. Archit. News 25(2),
194–205 (1997). doi:10.1145/384286.264200

133. Sodani, A., Sohi, G.S.: An empirical analysis of instruction repetition. SIGOPS Oper. Syst.
Rev. 32(5), 35–45 (1998). doi:10.1145/384265.291016

134. Sodani, A., Sohi, G.S.: Understanding the differences between value prediction and instruc-
tion reuse. In: MICRO 31: Proceedings of the 31st Annual ACM/IEEE International Sympo-
sium on Microarchitecture, pp. 205–215. IEEE Computer Society, Los Alamitos (1998)

135. Yang, B.S., Moon, S.M., Park, S., Lee, J., Lee, S., Park, J., Chung, Y.C., Kim, S., Ebcioğlu,
K., Altman, E.R.: Latte: A java vm just-in-time compiler with fast and efficient register allo-
cation. In: IEEE PACT, pp. 128–138 (1999)

http://dx.doi.org/10.1145/151220.151227
http://dx.doi.org/10.1145/384286.264200
http://dx.doi.org/10.1145/384265.291016

www.manaraa.com

Chapter 5
Dynamic Detection and Reconfiguration

Abstract As very diverse applications have to be executed in the same computa-
tional structure, the pressure for dynamic modifications in the reconfigurable logic
increases, since fast adaptability is key to sustain fast execution with the lowest pos-
sible power dissipation. This proves that the main strategy to bring reconfigurable
systems to be used as mainstream computing is to rely on dynamic optimization
techniques, such as the ones already presented. Therefore, in this chapter two ap-
proaches that use reconfigurable fabric together with a mechanism that somehow
reassembles the behavior of the dynamic optimization techniques are discussed,
as well as their basic structure, granularity, communication issues, how the binary
translation mechanism works and their potential gains in performance and energy.

5.1 Warp Processing

Trying to unify some of the ideas of dynamic optimization with reconfigurable sys-
tems, Vahid et al. [143, 144, 146, 150–152] presented the first studies about the
benefits and feasibility of dynamic partitioning (which is the process of finding the
best parts of software to be executed on hardware) using reconfigurable logic, pro-
ducing good results for a number of popular embedded system benchmarks. The
main purpose of the approach is, just as many others, to use FPGAs to implement
the most executed parts of the software, boosting performance. The difference, in
this case, is that the speedups are achieved in a totally transparent process, without
any user involvement. The system is targeted to speedup specific programs, such
as the ones with dataflow behavior and distinct kernels subject of optimization. The
software partitioning and decompilation, as well as FPGA synthesis, place and route
are done at run time, during the program execution.

This approach, called Warp Processing, is based on a complex SoC. As it can
be observed in Fig. 5.1, the system is composed of a microprocessor to execute the
application software, another microprocessor where a simplified CAD algorithm
runs, local memory and a dedicated FPGA array. As it happens in conventional BT
systems described in the previous chapter, the first time an application is executed

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_5, © Springer Science+Business Media B.V. 2010

119

http://dx.doi.org/10.1007/978-90-481-3913-2_5

www.manaraa.com

120 5 Dynamic Detection and Reconfiguration

Fig. 5.1 The Warp processor
system

on the GPP, a profiler monitors its behavior, so it can find the critical kernels. Then,
the on-chip CAD running in the SOC starts working to implement these software
parts to be executed as reconfigurable instructions on the FPGA. The profiler is non-
intrusive, in the sense that it monitors instructions using the instruction memory bus,
being located outside the GPP.

The authors claim that Warp Processing aims to optimize embedded systems that
repeatedly execute the same standalone application for extended periods. The im-
portance of backwards compatibility is also highlighted. Moreover, Warp Processing
could also be used for applications that execute several times on the system at dif-
ferent periods, as long as there is available a mechanism to save the configurations,
so that they could be reused in the future.

5.1.1 The Reconfigurable Array

When comparing to a regular off-the-shelf FPGA, the one implemented for the Warp
System is simplified regarding its structure, so technology mapping is simpler, al-
lowing higher clock frequencies. This FPGA, called W-FPGA, is composed of reg-
isters and CLBs with two 3-input 2-outputs LUTs each (Fig. 5.2). Moreover, the
W-FPGA has a 32-bit MAC (multiplier-accumulator), a DADG (Data Address Gen-
erator) to handle memory accesses, and uses a special routing scheme [144].

The registers found in the W-FPGA can be used as input to the MAC or be di-
rectly connected to the reconfigurable fabric. In addition, the outputs from the con-
figurable logic are connected to those registers, so that they can store intermediate
values during a given computation. The registers are also responsible for interfac-
ing to the rest of the system. The W-FPGA is organized this way because the main
purpose of Warp Processing is to optimize loops and DSP like applications. For
instance, the computation of loop bounds or sequential memory addresses become

www.manaraa.com

5.1 Warp Processing 121

Fig. 5.2 Simplified Warp
FPGA structure: CLB with
two LUTs

Fig. 5.3 Simplified Warp
FPGA structure: routing

faster when using the DADG. MAC, in turn, is a very common operation found in
DSP applications. This way, implementing it directly in dedicated hardware instead
of using the configurable logic brings huge performance gains.

As can be observed in Fig. 5.3, the CLBs are surrounded by switch matrices,
and each CLB is connected to one of them. The switch matrix can route data to
the four adjacent switches, or to one switch two rows apart vertically, or to another
switch also two columns apart horizontally. Albeit this is a restriction in the routing
mechanism, it facilitates the job for the CAD algorithm, making the FPGA cheaper
to be implemented. CLBs are also capable of supporting carry chains internally
(connecting their LUTs), or externally, being directly connected to adjacent CLBs
within the same row. Hence, components such as adders and comparators that need
carry logic can be easily implemented regarding the routing mechanism.

5.1.2 How Translation Works

The Translation system is illustrated in Fig. 5.4, and the following steps for its func-
tioning are necessary:

1. Initially, the software binary is loaded into the instruction memory;
2. The microprocessor executes the instructions from this software binary;
3. Profiler monitors the instructions and detects critical regions in binary.

Then, the on-chip CAD:

www.manaraa.com

122 5 Dynamic Detection and Reconfiguration

Fig. 5.4 Steps performed by the CAD software

1. reads in critical regions;
2. decompiles a given critical region into a control data flow graph (CDFG);
3. synthesizes the decompiled CDFG to a custom (parallel) circuit;
4. maps this circuit onto FPGA;
5. replaces instructions in the original binary to use the FPGA hardware.

As already explained, the profiler is responsible for finding the hot spots of the
binary code. The entry points for parts of code that can be optimized are backward
branches. Each time the profiler finds such instructions, it uses a specific cache
of branch frequencies. This way, it is possible to identify hot spots that should be
optimized. Once a hot spot is found, the on-chip CAD starts working.

The first task of the on-chip CAD is decompilation. It converts the binary code to
an intermediate language, which has its own instruction set. Then, both control and
dataflow graphs are built. With these graphs, the decompiler performs some com-
piler optimizations. Two new techniques were proposed: loop rerolling, used to de-
tect unrolled loops and transform them back to their original format, since the gains
of warp processing are highly based on loop optimizations; and operator strength
promotion, which finds transformed operations, such as multiplications transformed
to a sequence of shifts and adds, also translating them back to their original format.
This way, it is possible to use the specific circuits available in FPGA to perform the
function (in this case, the hardware dedicated multiplier).

After that, it is time to partition the code. Profiler information is used in order
to figure which kernels are suitable for hardware implementation. Once the critical

www.manaraa.com

5.1 Warp Processing 123

regions are identified, the RT synthesis converts the graphs of those regions to a
hardware circuit description, which will be later converted to a netlist format, speci-
fying that circuit using Boolean expressions for each output. Then, the Just In Time
FPGA compiler starts mapping that netlist to FPGA.

The mapping process involves several phases. The first task of the JIT FPGA
compiler is logic synthesis, in order to optimize the circuit. This is done by using an
algorithm to minimize an acyclic graph based on the Boolean logic network. In this
network, each node corresponds to simple 2-input gates such as ADD, OR etc. With
the optimized circuit, technology mapping starts working. It uses a graph clustering
algorithm, to combine the nodes of the graph to create 3-input/2-output LUT nodes.
Then they can be mapped directly to the W-FPGA. The LUTs are packed into CLBs
trying to minimize communication costs. Finally, the CLBs are put onto the con-
figurable logic and their inputs and outputs are routed. According to the authors,
routing is the most compute- and memory-intensive CAD task.

The last step is to update the software binary so it can use the just generated
hardware parts the next time it is executed. The original instructions are replaced for
others to handle the communication and control of the hardware. During hardware
execution, the processor is shut down. It is turned on again when a completion signal
arrives from the FPGA. If the system figures that the new hardware would result in
a slowdown, the binary updater does not change the original program for that part.

5.1.3 Evaluation

In [143], the CAD algorithm was executed on an ARM7, including separate cache
and memory (instruction and data). On average, it takes 1.2 seconds to execute on
an ARM7 running at 40 MHz. The authors claim that it would be possible to elim-
inate the extra processor and execute the CAD module together with the regular
applications on the same processor, though. The warp processor was compared with
several HW/SW partitioning approaches, with performance and energy data. Bench-
marks from different sets were considered (such as NetBench [147] and Mediabench
[142]).

In [152] it is claimed that the FPGA fabric supports nearly 50,000 equivalent
gates. In 0.18-µm technology, the W-FPGA would take approximately the same
area as an ARM9 processor with 32 Kb, or the same as a standalone 64-Kbyte of
cache memory.

In [145], results show the benefits of warp processing for soft-core processors.
The technique was implemented in a MicroBlaze-based FPGA. Several embedded
systems applications from the Powerstone and EEMBC benchmark suites were an-
alyzed. The experimental setup considers a MicroBlaze processor implemented us-
ing the Spartan3 FPGA. The MicroBlaze processor core has a maximum clock fre-
quency of 85 MHz. However, the remaining FPGA circuits can operate at up to
250 MHz. The processor was configured to include a barrel shifter and multiplier,
as the applications considered required both operations. In the same article, they

www.manaraa.com

124 5 Dynamic Detection and Reconfiguration

present the performance speedup and energy reduction of the MicroBlaze-based
warp processor compared with a standalone MicroBlaze processor. The software
application execution was simulated on the MicroBlaze using the Xilinx Micropro-
cessor Debug Engine, where instruction traces for each application were obtained.
This trace was used to simulate the behavior of the on-chip profiler to determine the
single most critical region within each application.

The system was also compared with readily available hard-core processors. In
overall, the MicroBlaze extended with Warp Processing had better performance
than the ARM7, ARM9, and ARM10 processors, and requires less energy than
the ARM10 and ARM11 processors. The ARM11 processor executing at 550 MHz
is on average 260% faster than the MicroBlaze warp processor, but requires 80%
more energy. Furthermore, compared with the ARM10 executing at 325 MHz, the
MicroBlaze warp processor is on average 30% faster while requiring 26% less en-
ergy. Therefore, while the MicroBlaze warp processor is neither the fastest nor the
lowest energy alternative, it is comparable and competitive with existing hard-core
processors, while having all the flexibility advantages associated with soft-core pro-
cessors.

5.2 Configurable Compute Array

In [136–140] the Configurable Compute Array (CCA) was proposed. CCA is a
coarse grain reconfigurable array tightly coupled to an ARM processor.

5.2.1 The Reconfigurable Array

The proposed CCA is implemented as a matrix of heterogeneous functional units
(FUs). There are two types of FUs in this design, referred to as type A and B,
for simplicity. Type A FUs perform 32-bit addition/subtraction as well as logi-
cal operations. Type B FUs perform only the logical operations, which include
and/or/xor/not, sign extension, bit extraction, and moves. To ease the mapping of
subgraphs onto the CCA, each row is composed of either type A FUs or type B
FUs.

The matrix can be characterized by the depth, width, and operation capabilities.
Depth is the maximum length dependence chain that a CCA will support. This cor-
responds to the potential vertical compression of a dataflow subgraph. Width is the
number of FUs that can work in parallel. This represents the maximum instruction-
level parallelism (ILP) available to a subgraph execution. Figure 5.5 shows the block
diagram of a CCA with depth 7. In this figure, type A functional units (FU) are rep-
resented with white squares and type B units with gray squares. The CCA has 4
inputs and 2 outputs. Any of 4 inputs can drive the FUs in the first level. The first
output delivers the result from the bottom FU in the CCA, and the second output is
optionally driven from an intermediate result from one of the other FUs.

www.manaraa.com

5.2 Configurable Compute Array 125

Fig. 5.5 Example of a CCA
with 4 inputs and 2 outputs,
and depth of 7

5.2.2 Instruction Translator

Feeding the CCA involves two steps: the discovery of which subgraphs are suit-
able for running on the CCA, and their replacement by microops in the instruction
stream. Two alternative approaches are presented: static and dynamic. Static discov-
ery finds subgraphs for the CCA at compile time. Those are marked in the machine
code by using two additional instructions, so that a replacement mechanism can in-
sert the appropriate CCA microops dynamically. Using these instructions to mark
patterns allows for binary forward compatibility, meaning that as long as future gen-
erations of CCAs support at least the same functionality of the one it was compiled
for, the subgraphs marked in the binary will still be useful. However, as the code is
changed, the backward compatibility is lost anyway.

Dynamic discovery, in turn, assumes the use of a trace cache to perform sub-
graph discovery on the retiring instruction stream. Its main advantage is that the use
of the CCA is completely transparent to the ISA. Theoretically, the static discovery
technique can be much more complex than the dynamic version, since it is per-
formed offline; thus, it does a better job on finding subgraphs. Figures 5.6 and 5.7
demonstrate how a sequence of instructions is mapped into a typical CCA configu-
ration. The CFG representing a part of the code (Fig. 5.7) is shown in Fig. 5.6. The
bold circles represent the instructions that are in the critical path. These instructions
will be mapped to the CCA. Finally, Table 5.1 shows the delays of the functional
units that will be used for this sequence. This measurement proves that it is possible
to perform more than one single computation within a single clock cycle without
affecting the critical path. The shifters do not present any delay because they use
compile time constants.

The instruction grouping discovery technique proposed to be used together with
the CCU is highly based on the rePlay Framework [148]. The process works as
follows: initially, the application is profiled to identify frequently executed kernels,

www.manaraa.com

126 5 Dynamic Detection and Reconfiguration

Fig. 5.6 Part of code that
will be mapped to the CCA

Fig. 5.7 After mapping

Table 5.1 Delays

www.manaraa.com

5.2 Configurable Compute Array 127

Fig. 5.8 Speed-up versus
Area overhead, represented
by the cost of adders

called frames. The most frequently executed ones are then analyzed and subgraphs
that can be beneficially executed on the CCA are selected. Then, the compiler gener-
ates machine code for the application, explicitly identifying the optimized subgraphs
to facilitate simple dynamic replacement during execution. Frames have the same
purpose of superblocks [141] or use the same principle of trace cache [149]; they
have one single entry point and one single exit point, encapsulating one single flow
of control in an atomic fashion: if one instruction within a given frame is executed,
the rest of the instructions is also executed. A frame is composed of instructions
based on speculative branch results. If one transformed branch (assertion) is miss
predicted inside the frame, the whole frame execution is discarded.

The subgraphs considered were limited to have at most four inputs and two out-
puts. Furthermore, memory, branch, and complex arithmetic operations were ex-
cluded from the subgraphs. Previous work [153] has shown that allowing more than
four input or two output operands would result in very modest performance gains
when memory operations are not allowed in subgraphs. In Fig. 5.8 one can observe
the potential of implementing a CCA together with the microprocessor, demonstrat-
ing the speedup versus a relative area cost of each CCA for three different applica-
tions. As it can be seen, with a small cost in terms of hardware, good performance
improvements can be achieved.

It is important to point out that operations involving more expensive multi-
plier/divider circuits are not allowed in subgraphs, because of latency issues. Addi-
tionally, memory operations are also disallowed. Load operations have non-uniform
latencies, due to cache effects, so supporting them would entail incorporating stall
circuitry into the CCA. Although shifts did constitute a significant portion of the op-
eration mix, barrel shifters were too large and incurred too much delay for a viable
CCA implementation considering project restrictions.

www.manaraa.com

128 5 Dynamic Detection and Reconfiguration

5.2.3 Evaluation

Some evaluations were performed in order to analyze what would be the best con-
figuration for the CCA, given a determined group of benchmarks. It was shown that
the reconfigurable fabric depths vary across a representative subset of three groups
of benchmarks. For example, in blowfish (part of the MIBench set), 81.42% of dy-
namic subgraphs had a depth less than or equal to four instructions. Taking the
average of all the 29 applications executed on the system, about 99.47% of the dy-
namic subgraphs have a depth of seven instructions or less. Graph depth is a critical
design parameter, since it directly affects the latency of the CCA. It was discovered
that a CCA with depth 4 could be used to implement more than 82% of the sub-
graphs, considering a diverse group of analyzed applications. Going below depth
of 4 seriously affects the coverage of subgraphs that can be executed on the CCA.
Therefore, only CCAs with depths between 4 and 7 were considered in the study.

The search for the ideal width was also performed. Using the same set of ap-
plications, it was figured that 4.2% of dynamic subgraphs had width of 6 or less in
row 1, with only 0.25% of them having width 7 of more. In the following rows of the
matrix, the widths decrease. For instance, the average width in row 2 is 4 or 5. This
data suggests that a CCA should be triangularly shaped to maximize the number of
subgraphs supported without wasting area resources.

5.3 Drawbacks

There are some drawbacks when using the aforementioned techniques. Concerning
the Warp Processing, the first one is that it uses a complete SOC, with different hard-
ware communicating with each other, which could increase the design cycle time
and make it harder to test. Moreover, even if the CAD system used is simplified, it
remains complex: it does decompilation, CFG analysis, place and route etc, requir-
ing significant resources: up to 8 MB of memory are necessary for its execution,
still big and power hungry for nowadays on-die memories. Another deficiency is
related to the FPGA: besides the long latency and area overhead, it is also power in-
efficient, due to the excessive switches and the considerable amount of static power
dissipated. Moreover, because of the memory footprint required for storing config-
urations, this technique is just limited to critical parts of the software, working at its
best just in very particular programs, such as the filter based ones, being very restric-
tive even when considering embedded systems. Floating point arithmetic, dynamic
memory allocation, recursion and the user of pointers other than array accesses are
not allowed.

The CCA does not support memory operations, shifts and multiplications—or
any operation that involves a different delay when comparing to the functional units
employed, limiting its field of application. Therefore, the context has a limited num-
ber of inputs and outputs. Moreover, it uses very complicated graph analysis and
changes the binary in the static discovery. In the same way, the dynamic approach

www.manaraa.com

References 129

also makes use of a complex graph analysis, based on RePlay [148], which leads
to a huge memory overhead. Because of that, just high-level simulations using the
Simplescalar Toolset are reported. No measurements are given in terms of area over-
head, power consumption and timing and there are no details about how a CGF is
transformed to an array’s configuration at run time. The overheads considering the
array, and the detection and reconfiguration delays are not discussed at all.

Despite all the aforementioned drawbacks, both works discussed previously are
very important, because they show the potential of executing parts of the software
in reconfigurable logic and its feasibility.

References

136. Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K.: An architecture framework
for transparent instruction set customization in embedded processors. In: ISCA ’05: Proceed-
ings of the 32nd Annual International Symposium on Computer Architecture, pp. 272–283.
IEEE Computer Society, Los Alamitos (2005). doi:10.1109/ISCA.2005.9

137. Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K.: Application-specific processing
on a general-purpose core via transparent instruction set customization. In: MICRO 37: Pro-
ceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 30–40. IEEE Computer Society, Los Alamitos (2004). doi:10.1109/MICRO.2004.5

138. Clark, N., Tang, W., Mahlke, S.: Automatically generating custom instruction set extensions.
In: Workshop on Application-Specific Processors (WASP), pp. 94–101 (2002)

139. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated instruction set
customization. In: MICRO 36: Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, p. 129. IEEE Computer Society, Los Alamitos (2003)

140. Clark, N.T., Zhong, H.: Automated custom instruction generation for domain-specific pro-
cessor acceleration. IEEE Trans. Comput. 54(10), 1258–1270 (2005). doi:10.1109/TC.
2005.156. Member-Mahlke, Scott A.

141. Hwu, W.M.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Quel-
lette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery, D.M.: The superblock:
an effective technique for vliw and superscalar compilation. In: Instruction-level Parallel Pro-
cessors, pp. 234–253 (1995)

142. Lee, C., Potkonjak, M., Mangione-smith, W.H.: Mediabench: A tool for evaluating and syn-
thesizing multimedia and communications systems. In: International Symposium on Mi-
croarchitecture, pp. 330–335 (1997)

143. Lysecky, R., Stitt, G., Vahid, F.: Warp processors. ACM Trans. Des. Autom. Electron. Syst.
11(3), 659–681 (2006). doi:10.1145/1142980.1142986

144. Lysecky, R., Vahid, F.: A configurable logic architecture for dynamic hardware/software par-
titioning. In: DATE ’04: Proceedings of the Conference on Design, Automation and Test in
Europe, p. 10480. IEEE Computer Society, Los Alamitos (2004)

145. Lysecky, R., Vahid, F.: A study of the speedups and competitiveness of fpga soft processor
cores using dynamic hardware/software partitioning. In: DATE ’05: Proceedings of the Con-
ference on Design, Automation and Test in Europe, pp. 18–23. IEEE Computer Society, Los
Alamitos (2005). doi:10.1109/DATE.2005.38

146. Lysecky, R., Vahid, F.: Design and implementation of a MicroBlaze-based warp processor.
ACM Trans. Embed. Comput. Syst. 8(3), 1–22 (2009). doi:10.1145/1509288.1509294

147. Memik, G., Mangione-Smith, W.H., Hu, W.: NetBench: a benchmarking suite for network
processors. In: ICCAD ’01: Proceedings of the 2001 IEEE/ACM International Conference
on Computer-aided Design, pp. 39–42. IEEE Press, New York (2001)

http://dx.doi.org/10.1109/ISCA.2005.9
http://dx.doi.org/10.1109/MICRO.2004.5
http://dx.doi.org/10.1109/TC.2005.156
http://dx.doi.org/10.1109/TC.2005.156
http://dx.doi.org/10.1145/1142980.1142986
http://dx.doi.org/10.1109/DATE.2005.38
http://dx.doi.org/10.1145/1509288.1509294

www.manaraa.com

130 5 Dynamic Detection and Reconfiguration

148. Patel, S.J., Lumetta, S.S.: Replay: A hardware framework for dynamic optimization. IEEE
Trans. Comput. 50(6), 590–608 (2001). doi:10.1109/12.931895

149. Rotenberg, E., Bennett, S., Smith, J.E.: Trace cache: a low latency approach to high band-
width instruction fetching. In: MICRO 29: Proceedings of the 29th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 24–35. IEEE Computer Society, Los Alami-
tos (1996)

150. Stitt, G., Lysecky, R., Vahid, F.: Dynamic hardware/software partitioning: a first approach.
In: DAC ’03: Proceedings of the 40th Annual Design Automation Conference, pp. 250–255.
ACM, New York (2003). doi:10.1145/775832.775896

151. Stitt, G., Vahid, F., McGregor, G., Einloth, B.: Hardware/software partitioning of soft-
ware binaries: a case study of h.264 decode. In: CODES+ISSS ’05: Proceedings of the
3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis, pp. 285–290. ACM, New York (2005). doi:10.1145/1084834.1084905

152. Vahid, F., Stitt, G., Lysecky, R.: Warp processing: Dynamic translation of binaries to fpga
circuits. Computer 41(7), 40–46 (2008). doi:10.1109/MC.2008.240

153. Yu, P., Mitra, T.: Characterizing embedded applications for instruction-set extensible proces-
sors. In: DAC ’04: Proceedings of the 41st Annual Design Automation Conference, pp. 723–
728. ACM, New York (2004). doi:10.1145/996566.996764

http://dx.doi.org/10.1109/12.931895
http://dx.doi.org/10.1145/775832.775896
http://dx.doi.org/10.1145/1084834.1084905
http://dx.doi.org/10.1109/MC.2008.240
http://dx.doi.org/10.1145/996566.996764

www.manaraa.com

Chapter 6
The DIM Reconfigurable System

Abstract As it was shown throughout this book, in order to use reconfigurable com-
puting across several application domains, one must ensure, at the same time, dy-
namic configuration (to adapt to different program characteristics), software com-
patibility (since one cannot discard the issue of software legacy, always a pressing
issue), and energy efficiency (due to the limits of integration or to cover mobile
markets). In this chapter, a reconfigurable machine that covers all these aspects is
discussed.

6.1 Introduction

While the number of embedded systems is growing, a new trend can be observed: the
presence of multi-functional devices, which perform a wide range of different ap-
plications with diverse behaviors, e.g. present day portable phones or PDAs. There-
fore, simple processors are not enough to handle the computational requirements
of these new systems anymore, thus forcing designers to create novel solutions to
increase their performance, while maintaining power dissipation as low as possible.
Furthermore, new marketing strategies have been focusing on increasing the device
functionalities during the product life cycle to reach a wider market.

As an example, Iphone uses a system on a chip (SoC) to execute its many
available functions. A general-purpose ARM processor is responsible for the man-
agement of several other processing elements like 3D-graphics coprocessor, audio
and video. Moreover, common desktop processors techniques running at almost
700 MHz are found in this platform: SIMD execution, ARM Jazelle and DSP exten-
sions. Basically, each technology that was incorporated in this architecture attacks
a specific application domain. For instance, SIMD execution aims to provide high
performance on integer multimedia applications, while the Jazelle works as a Java
acceleration engine. This scenario illustrates a current embedded design strategy,
which is based on several different circuits, each one built to perform a specific
function for a defined application domain.

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_6, © Springer Science+Business Media B.V. 2010

131

http://dx.doi.org/10.1007/978-90-481-3913-2_6

www.manaraa.com

132 6 The DIM Reconfigurable System

In the general-purpose computation market, the application heterogeneity is an
order of magnitude higher and there is always a need to reach better performance
speedups. As discussed in the begging of this book, superscalar processors are
reaching their limits when it comes to accelerate single thread software. Thus, the
extra area available has been employed to include extra chips in the die. However,
there are programs that are hard to parallelize. Furthermore, some of them need
recompilation to benefit from a multithread hardware, meaning that all the issues
concerning code recompilation discussed in the Binary Translation section emerge
again. In the same way, applications with a high rate of communication and small
pieces of data that must be transferred may be not worth to be distributed. Conse-
quently, considering a wide range of applications that are executed on the computer,
there is always the need of speeding up a single thread. In some fields with massively
distributed physical characteristics (time forecast, atomic simulations, earthquake
predictions, etc.), the need for high performance computing is even larger.

Nevertheless, there is also the necessity for power savings. While in mobile em-
bedded systems the main need is to sustain the device working as long as possible
without recharging the battery, in the general and high performance computation the
worries are focused on overheating issues.

As already discussed and somehow demonstrated, reconfigurable systems are po-
tential candidates to be an architectural alternative to handle these issues. However,
they have two main drawbacks. The first one is that they are designed to handle very
data intensive or streaming workloads. This means that the main design strategy is to
consider the target applications as having very distinct kernels for optimization. By
speeding up small parts of the software, huge gains would be achieved. In contrast,
as commented before, the number of applications running on a system (embedded
or desktop) is growing. The second problem is that the process of mapping pieces of
code to reconfigurable logic usually involves some kind of transformation, manual
or using special languages or tool chains. These transformations modify somehow
the source or the binary code, precluding the wide spread usage of reconfigurable
systems. As already shown, sustaining binary compatibility, allowing legacy code
reuse and traditional programming paradigms are key factors to reduce the design
cycle and maintain backward compatibility.

While the approaches presented in the previous chapter handle some of the afore-
mentioned issues, they cannot attack properly both at the same time. This way,
the approach here discussed has several objectives: accelerate any kind of sys-
tem, no matter its behavior; be totally transparent, meaning that no modifications
in the binary code is needed at all, and consequently guaranteeing backward and
forward compatibility; and to be implementable in hardware considering nowa-
days technologies. In the following sub-sections the structure of the system and
the case studies are demonstrated. In addition, a quantitative analysis is performed,
so that the potential gains of using such system are shown. A detailed analysis in
power and energy consumption, area overhead and performance speedups are pre-
sented.

www.manaraa.com

6.1 Introduction 133

6.1.1 General System Overview

The DIM reconfigurable system [158, 159, 161–163] is a set of two different mech-
anisms: the first one, which is the reconfigurable array, and the second, a binary
translation algorithm implemented in hardware. The special BT hardware is called
Dynamic Instruction Merging (DIM). The basic system functionality is illustrated
in Fig. 6.1. DIM is designed to detect and transform instruction groups for recon-
figurable hardware execution. This is done concurrently while the main processor
fetches other instructions. When a sequence of instructions is found, following given
policies that will be explained later, a binary translation is applied to it. There-
after, this configuration is saved in a special cache, and indexed by the program
counter (PC).

The next time the saved sequence is found, the dependence analysis is no longer
necessary: the processor loads the previously stored configuration from the special
cache, the operands from the register bank, and activate the reconfigurable hardware
as functional unit. Then, the array executes that configuration in hardware (including
write back of the results), instead of normal processor instructions. Finally, the PC is
updated, in order to continue with the execution of the normal (not translated) block
of instructions. This way, repetitive dependence analysis for the same sequence of
instructions is avoided. Depending on the size of the special cache used to store the
configurations, the optimization can be extended to the entire application, not being
limited to very few hot spots. Moreover, both the DIM engine and the reconfigurable

Fig. 6.1 How the DIM system works

www.manaraa.com

134 6 The DIM Reconfigurable System

array are designed to work in parallel to the processor and do not introduce any delay
overhead or penalties in the critical path of the pipeline structure.

The reconfigurable array is tightly coupled to the processor, working as another
ordinary functional unit in the pipeline. It is composed of ordinary arithmetic func-
tional units, as ALUs and multipliers, to perform the computation. A set of multi-
plexers is responsible for the routing. The use of a coarse grain array makes the job
of the DIM algorithm easier: since it has a small context size and less complexity in
its structure, it becomes more suitable for this kind of dynamic technique.

By using binary translation to avoid source code recompilation or the utilization
of extra tools, the optimization process is totally transparent to the programmer.
Consequently, such approach does not require extra designer effort and causes no
disruption to the standard tool flow used during the software development. Further-
more, depending on the size of the special cache used to store the configurations,
the optimization can be extended to the entire application, not being limited to very
few hot spots.

Comparing to the techniques cited in the previous chapter, because of the use
of a coarse grain unit, it can be implemented in any technology, not being limited
to FPGAs only. Adding to the fact that the array is not limited to the complexity of
fine-grain configurations, the binary code detection and translation algorithm is very
simple and supports any kind of integer instructions, including memory accesses. It
can be implemented using trivial hardware resources, in contrast to the complex on-
chip CAD software or graph analyzers employed by the approaches mentioned in
Chap. 5.

6.2 The Reconfigurable Array in Details

A general overview of the array organization is shown in Fig. 6.2. The array is
two-dimensional. Each instruction is allocated in an intersection between one row
and one column. If two instructions do not have data dependences, they can be
executed in parallel, in the same row. Each column is homogeneous, containing
a determined number of ordinary functional units of a particular type, e.g. ALUs,
shifters, multipliers etc. Depending on the delay of each functional unit, more than
one operation can be executed within one processor equivalent cycle. It is the case
of the simple arithmetic ones. On the other hand, more complex operations, such
as multiplications, usually take longer to be finished. The delay is dependent on the
technology and the way the functional unit was implemented. Load/store (LD/ST)
units remain in a different group of the array. The number of parallel units in this
group depends on the amount of ports available in the memory. The current version
of the reconfigurable array does not support floating point operations, although this
could be easily added as another resource.

For the input operands, there is a set of buses that receive the values from the
registers. These buses will be connected to each functional unit, and a multiplexer
is responsible for choosing the correct value. As can be observed in more details
in Fig. 6.3, for each FU, there are two multiplexers that will make the selection

www.manaraa.com

6.3 Translation, Reconfiguration and Execution 135

Fig. 6.2 General overview of
the reconfigurable array

of which operand will be issued for execution. They are the input multiplexers.
After the operation is completed, there is a multiplexer for each bus line that will
choose which result will continue through that line. These are the output multiplex-
ers. As some of the values of the input context or old results generated by previous
operations can be reused by other functional units, the first input of each output
multiplexer always holds the previous result of the same bus line. Note that, if one
considers that the configuration of all multiplexers is set to zero at the beginning of
any execution, the output context will be the same as the input context.

6.3 Translation, Reconfiguration and Execution

The reconfiguration phase involves the load of the configuration bits for the mul-
tiplexers, functional units and immediate values from the special cache, followed
by the fetch of the input operands from the register bank. As already commented,

www.manaraa.com

136 6 The DIM Reconfigurable System

Fig. 6.3 A more detailed view of the array

a given configuration is indexed in the cache using the PC of the first instruction of
the translated sequence. During execution, this address is known at the first stage of
the pipeline (it is the value of the PC register). Therefore, it is possible to realize if a
configuration indexed by that PC is in the configuration cache at that moment. This
way, since the array is supposed to start execution in the fourth stage (the execution
stage in this case), there are three cycles available for the array reconfiguration. In
cases three cycles are not enough (for example, there is a large number of operands
to be fetched from the register bank) the processor will be stalled and wait for the
end of the reconfiguration process.

After the reconfiguration is finished, execution begins. Memory accesses are per-
formed by the LD/ST units. Their addresses can be calculated by ALUs located
in previous rows, during execution, allowing memory operations even with those
addresses that are not known at compile time. The operations that depend on the
result of a load are allocated considering a cache hit as the total load delay. If a miss
occurs, the whole array operation is stalled until it is resolved. Finally, when the
operands are not used anymore for that configuration, they are written back either
in the memory or in the local registers. If there are two writes to the same register
in a given configuration, just the last one will be performed, since the first one was
already consumed inside the array by other instructions.

The binary translation hardware starts working on the first instruction found af-
ter a branch execution, and stops the translation when it detects an unsupported
instruction or another branch (when no speculative execution is supported). If more
than three instructions were found, a new entry in the cache is created and the data

www.manaraa.com

6.3 Translation, Reconfiguration and Execution 137

of a special buffer, used to keep the temporary translation, is saved. This transla-
tion relies on a set of tables, used to keep the information about the sequence of
instructions that is being processed, e.g. the routing of the operands as well as the
configuration of the functional units.

The BT algorithm takes advantage of the hierarchal structure of the reconfig-
urable array: for each incoming instruction, the first task is the verification of RAW
(read after write) dependences. The source operands are compared to a bitmap of
target registers of each row. If the current row and all above do not have that target
register equal to one of the source operands of the current instruction, it can be allo-
cated in that row, in a column at the first available position from the left, depending
on the group. When this instruction is allocated, a dependence table is updated in
the correspondent row. Summarizing the dependence information for each row, the
technique increases the size of the window of instructions, which is one of the major
limiting factors of ILP in superscalar processors, exactly due to the number of com-
parators necessary [167]. Finally, the source/target operands from/to the context bus
are configured for that instruction. For each row there is also the information about
what registers can be written back or saved to the memory. Hence, it is possible to
write results back in parallel to the execution of other operations. Figure 6.4 shows
an example of how a sequence of instructions would be allocated in the array after
detection and translation. As can be observed, allocation was performed considering
true data dependencies, since the BT can handle false ones.

The algorithm supports functional units with different delays and functionalities.
Moreover, it also performs speculative execution. In this case, each operand that will
be written back has an additional flag indicating in which speculated basic block it
is located. When the branch relative to that basic block is resolved, it triggers the
writes of these correspondent operands if the speculation was right. The specula-
tive policy is based on bimodal branch predictor [179]. A saturation point is used to
include and exclude basic blocks for speculation in a sequence. When the counter
reaches a predefined value for a basic block candidate for speculation, the instruc-

Fig. 6.4 An example of
instruction allocation

www.manaraa.com

138 6 The DIM Reconfigurable System

tions corresponding to this basic block are added to that configuration of the array.
The configuration is always indexed by the first PC address of the whole sequence.
If a miss speculation happens a predefined number of times for a given basic block
in a configuration, achieving the opposite value of the respective counter, that en-
tire configuration is flushed out and the process is repeated. The BT algorithm is
explained in more details in the next section.

6.4 The BT Algorithm in Details

In this subsection, the details of how the BT algorithm works are shown. To better
explain it, a very basic algorithm with many restrictions, considering that the array
is composed just by adders, will be first demonstrated. Then, its description will be
improved until it reflects the current implementation.

6.4.1 Data Structure

The tables necessary to make the routing of the operands inside the reconfigurable
array as well as the configuration of the functional units are illustrated in Fig. 6.5.
In this example, it is considered an array composed of twenty ALUs (five rows with
four ALUs each), although there is no restriction regarding the number of functional
units available or context size. Other intermediate tables are also necessary, however,
they are used only during the detection phase (their information is not saved in the
cache since it is not needed during the reconfiguration phase). The tables can be
described as follow:

• Write bitmap table: For each row, it stores information concerning data depen-
dences. This table is in fact composed of a large number of small bitmaps (one
per row). This bitmap informs what are the target registers for the instructions
allocated in that row, so it is not necessary to keep this information for each in-
struction as superscalar designs usually do. Consequently, it is possible to reduce
the amount of hardware necessary to check true data dependences (RAW—read
after write).

Fig. 6.5 Tables necessary for the detection and configuration of the array

www.manaraa.com

6.4 The BT Algorithm in Details 139

• Resource Table: Informs if a given functional unit is free or not.
• Reads Table: Responsible for informing which operand from the input context

must be issued to each functional unit. Considering that each functional unit has
two inputs, each entry in this table holds two different values. The input context is
an indirect table, meaning that not necessarily the first context slot needs to keep
the value of the register R1.

• Writes table: This table informs what value each context slot will receive. This
table is different when comparing to the previous one. In the reads table, the
multiplexers were responsible for choosing which values from the context slots
would be issued to each functional unit. The Writes Table, in turn, informs what
values from the whole set of the functional units that compose each row will
continue in each slot of the context bus.

• Context table: This table has only two rows. The first one represents the input
context, and it will be used in the reconfiguration phase for the operands fetch.
The second one is called current table, and it is used during the detection phase. Its
final state represents what values will be written back when the array’s execution
finishes.

The tables follow the same structure as the reconfigurable array. In the case of the
Resource Table, the X-axis represents the parallel execution of instructions through
time (y-axis). Reads Table is almost the same, with the difference that each column
of the Resource Table is split in two (as commented before, each functional unit
has two input operands). Each item of the Write Table represents each slot of the
Context (so the number of columns of this table is the same as the number of context
slots).

6.4.2 How It Works

The following steps represent pipeline stages in the hardware implementation.
Considering that

inst opw, opr1, opr2

where inst is the current instruction and opw, opr1 and opr2 are the target and the
source operands, respectively, the follow steps are necessary:

1. Decode the instruction, returning its target and source registers.
2. In the Write table, for each row from 0 to N, verify if opr1 and opr2 exist. If

any one of them or both exist in the row S, row O equals to S + 1. Considering
a bottom-up search, the row S is the last one where opr1 or opr2 appears, since
they may be found in more than one row. If nor opr1 neither opr2 exist in any
row of this table, row O equals to zero.

3. In the resource table, search in the columns of row O, from left to right, if there
is a resource available for use. If there exists, mark that free column as C, and
row R equals to O. If there is no resource available in row O, increment the value
of O in 1 and repeat the same operation, until finding the free resource. This way,

www.manaraa.com

140 6 The DIM Reconfigurable System

row R equals to O + N , where N is the number of increments necessary until an
available resource is found.

4. (a) Update the Write Bitmap Table in row R with the value of opw.
(b) Update column C in row R of the resource table as busy.
(c) Search in the current context table if there are opr1, opr2 and opw. For each

one of these, if they exist, point L1, L2 and W to opr1, opr2 and opw respec-
tively. If one of them does not exist in the table, the correspondent signal of
write for each one of these values in this table is set, and the correspondent
pointer (L1, L2 or W) is updated.

5. (a) Depending on the step 4c, the current context table is updated. If the pointer
W is being written in the table, a flag indicating that it should be written back
at the end of execution is set.

(b) The initial context table is also updated, if one of the write signals concerning
opr1 and opr2 are set.

(c) In the Writes table, write the value of W in the row R, column C.
(d) In the Reads table, write the values of L1 and L2 in row R, column C.

As a simple example, considering the following sequence of instructions:

add r7, r5, r6
add r8, r7, r6
add r9, r8, r6
add r1, r2, r7
add r4, r2, r7

The organization of the tables would be as demonstrated in Fig. 6.6, after each in-
struction translation. Figure 6.7 shows how this configuration would be represented
in the structure of the array after its proper reconfiguration. Although the basic prin-
ciples of configuration and routing remain the same, the complete version has the
additional functionalities, as discussed next.

6.4.3 Additional Extensions

Immediate values are allowed for the input context. They are treated as registers
in the start table. However, they cannot be changed (so, no entry for them in the
current table is necessary), and hence they are fixed, being loaded together with the
rest of the configuration. It is important to note that, when the upper bound limit for
the input context is reached (for both immediate values and those from the register
bank), a new configuration is started. Also, a new table is employed, called resource
function table, with the same number of rows and columns as the resource table.
This new table stores the information of which operation each functional unit will
perform, so they can compute different functions.

Moreover, it is also possible to use different types of functional units, and differ-
ent delays for each unit are allowed. They are divided in groups of columns, where

www.manaraa.com

6.4 The BT Algorithm in Details 141

Fig. 6.6 How tables would be filled after the detection of a configuration

each column is always homogeneous, so functional units within the same group
have the same delay. The resource table remains the same. However, depending on
the delay a given functional unit takes for its operation, more than one row is marked
as busy. For instance, if a shifter takes one processor equivalent cycle to perform its
function, and the delay of three rows are equivalent to this cycle, the two positions
in the same column above the one already occupied by the shift instruction will also
be marked as busy.

www.manaraa.com

142 6 The DIM Reconfigurable System

Fig. 6.7 Graphical representation of the same configuration in the array

Memory accesses are allowed. No memory disambiguation is performed: it is
assumed that stores will always access the same address as previous loads. This
way, the allocation is conservative: stores are always allocated after loads. In a more
advanced version, however, advanced memory alias analysis will be performed. The
delay of these functional units can be configured according to the number of cycles
necessary to access the main memory or cache. If a cache is used and a miss occurs,
a special mechanism is provided to re-execute the instructions in the array from the
beginning, after that cache miss was resolved.

Write backs in different cycles, not just at the end of execution, are also sup-
ported. For that, an extension of the context table was done. Before, the context
table had just two rows: start and current contexts. Now, there is a copy of the cur-
rent context for each row of the array. This small table informs which registers will
be written back in that row. The number of simultaneous writes is the same as the
number of available ports in the register file. If there is more writes in the current
row than the register bank supports, these writes are forwarded to the next level.

6.4.4 Handling False Dependencies

As already stated, the BT algorithm is capable of handling false dependencies. Let us
use an example to better illustrate this approach, considering the following sequence
of instructions:

add r7, r5, r6
sub r5, r9, r6
mul r5, r8, r6

www.manaraa.com

6.4 The BT Algorithm in Details 143

Between the add and the sub, there is a false dependence, named WAR (Write
After Read). In this case, the processor could not execute the sub instruction in
parallel to the add because of data coherence: the value of r5 cannot be changed at
the same time it is read. Between the same sub and the next instruction, mul, another
type of false dependence occurs, known as WAW (Write After Write), again, with
R5. Because of the same reason as before, data coherence, both instructions cannot
be executed in parallel, since r5 cannot be written twice at the same time. They are
declared as false dependencies because one can apply techniques to avoid them,
such as Register Renaming [171]. However, register renaming is a very expensive
process, and has a high cost in the design of any superscalar processor [167].

In the proposed BT algorithm, the context table is altered to easily handle false
dependences. It has a pointer indicating the last operator included in the context
table. When an operation needs this operator, the search occurs from the right to the
left, beginning at this pointer. Each new destination operator that it is included, no
matter if it is already in the table, has a new entry in the current table. In the example
above, r5 would have 3 entries in the context table. If one considers that between
the add and sub there would have other instructions that would read r5, they would
use the first entry (included because of the add). When the sub instruction is found,
a new entry of r5 is added. Any instruction between the sub and mul instruction
would use this last entry in the array, because the search occurs from right to the
left (from the last to the first). In the same way, any instruction executed after the
mul would read the last entry of r5, and so on. As a circular buffer is employed, the
previous operators that are not used anymore can be overwritten by the new ones,
when necessary.

6.4.5 Speculative Execution

For speculative execution, DIM uses the same principle as trace scheduling: the
configurations of the array are indexed by the PC register and the following basic
blocks are speculatively executed. After execution, if there is no miss prediction,
the results are written back. However, if a miss prediction occurs, meaning that a
different path than the predicted before was taken, the results are discarded and the
control is given back to the processor, in order to execute the instructions using its
normal flow. The approach is illustrated in Fig. 6.8. In this example, it is considered
that the saturation point is 2. When the Basic Block 1 (Fig. 6.8a) is found, it is
allocated in the array as usual (Fig. 6.8b). After that, the branch instruction can
lead to two different paths: to the Basic Block 2 or to the Basic Block 3. In this
example, the path taken was to the Basic Block 3. This way, a variable responsible
for that branch is incremented (equals to 1). Next time Basic Block 1 is found, the
BT does not need to allocate its instructions (they have already been previously
allocated). However, again, it is verified that the same branch has taken the same
path as before: to the Basic Block 3. The branch control variable is incremented
once more, reaching the saturation point. Consequently, the instructions of the Basic

www.manaraa.com

144 6 The DIM Reconfigurable System

Fig. 6.8 How the saturation
point works during BT
detection for speculative
execution

Block 3 are also allocated in the same configuration (Fig. 6.8c). On the other hand,
if the path taken led to Basic Block 2, the variable would be decremented. If, during
execution, the number of miss predictions in a sequence equals the saturation point
for a given branch, the following basic block is removed from that configuration,
starting the whole BT process again.

A new group of functional unit was created in the array, composed of branch
units. For the write back of results, new multiplexers in each row were added. With-
out speculation, the array would have a given number of multiplexers per row di-
rectly connected to the register bank, in order to write back the results from the out-
put context. Now, it has more multiplexers per row, divided in groups. Each group
of multiplexers belongs to a given level of speculation in the array. The values of
each group of multiplexers are saved in a buffer, waiting for a trigger, correspondent
to the level of speculation. When a given branch unit executes the branch instruction
relative to that level, the bit signal is sent, informing if the values waiting for that
trigger must be written back (in case speculation was right) or should be discarded
(a miss speculation happened).

www.manaraa.com

6.5 Case Studies 145

This way, if there is a miss speculation, the array finishes its execution and just
writes back the results of the first basic block and the ones where the result of the
speculation of previous branches was correct. Then, DIM sends information to the
branch controlling hardware and, instead of returning the PC of the last instruction
of that configuration, it returns the one correspondent to the beginning of the basic
block that was miss speculated, in order to start the execution of the non translated
instructions again (now taking the right path for that branch).

6.5 Case Studies

To represent the general purpose computation field, the Simplescalar Toolset [166]
was used. It simulates an out-of-order superscalar processor that executes the PISA
(Portable Instruction Set Architecture) [166] which is based on the MIPS IV instruc-
tion set, so the processor is very similar to the MIPS R10000 [181]. The second
architecture employed was the MIPS R3000: the classic 5-stage RISC processor,
which executes the first proposed MIPS ISA. This processor is still in use, mainly
in the embedded system market.

6.5.1 Coupling the Array to a Superscalar Processor

For the performance analysis, an estimator was built and integrated to the simplest
version of the Simplescalar toolset: sim-safe. It was implemented in C (this lan-
guage was used because the Simplescalar was also programmed in C), following a
very similar approach that the authors in [180] used for performance estimates. In-
structions are analysed at run time, during the software execution. Being totally in-
tegrated to the Simplescalar toolset, parameters concerning the reconfigurable array,
such as the number of functional units and their delays, number of rows, columns,
can be easily changed. In addition, the simulator provides statistics considering dif-
ferent reconfiguration cache sizes, giving the average time spent by several opera-
tions, such as execution, context load, write back times, etc.

In the first experiment, aimed to analyze potential speedups of the technique,
the Simplescalar ToolSet was configured to behave like an ordinary in-order MIPS
processor (very similar to the MIPS R3000 processor), executing a subset of the
MiBench [170], with the follow algorithms: Basicmath, Bitcount, Qsort, Tiffdither,
Tiffmedian, Dijkstra, Patricia, Ghostscript, StringSearch, Sha, CRC, FFTinv and
FFT. A cache memory with three ports (two reads and one write per cycle) has been
assumed, and a latency of one cycle to fetch values from the cache was also as-
sumed. This assumption can be considered somehow very pessimistic. For instance,
when presenting the trace reuse approach, the authors in [169] considered the ca-
pability to perform 16 reads and writes per cycle, including register and memory
values. Superscalar architectures such as the Alpha 21264 [173] can perform up to
14 accesses per cycle (8 register reads, 4 register writes and 2 memory references).

www.manaraa.com

146 6 The DIM Reconfigurable System

Fig. 6.9 Performance
improvements when using
DIM

Fig. 6.10 The average
performance improvements

Therefore, the employed configuration could be implemented in nowadays memory
systems.

Figure 6.9 shows the performance improvements when coupling the array (with
no support for speculation) to the in-order MIPS based processor, compared to its
standalone version. The Y axis is the relative time spent by the algorithm according
to the size of the context memory (its implementation is similar to a cache memory),
shown in the X axis (zero means not using the reconfigurable array). It is considered
that the array is always big enough to execute the largest configuration found. Ana-
lyzing the figure, one could notice that depending on the algorithm, a small number
of context memory slots is necessary to show good performance improvements. As
the context memory works as a cache, and its replacement policy implemented for
this analysis was FIFO (First In, First Out), this cache must be large enough to
support all the basic blocks that are being executed inside a determined period of
time in order to allow their reuse. For instance, let us consider that an algorithm is
composed of a main loop and inside this loop there are five basic blocks. If there
are only four slots available in the context cache, the first time the first basic block
will be reused (in the second iteration of the loop), it will not be in the cache any-
more, and all the detection process should be done again. Therefore, in this case, no
optimization would be achieved.

Figure 6.10 [161, 162] shows the average gain (Y axis) concerning all algorithms,
with different context cache sizes (X axis). Depending on the context cache size,
the algorithms can be executed up to three times faster. The ideal curve represents
the performance gain when considering only 1 cycle per executed reconfigurable
instruction.

www.manaraa.com

6.5 Case Studies 147

Table 6.1 Configurations of the superscalar processor

Table 6.2 Configurations of
the array

Table 6.3 IPC in the Out-of-Order processor and the average BB size

The next experiment was to use the approach with support to speculative execu-
tion in the array [158, 159]. The Simplescalar was configured to behave as close as
possible to the Superscalar Out-Of-Order MIPS R10000 processor, for performance
comparisons. Its configuration is summarized in Table 6.1.

Table 6.2 shows three different configurations for the array employed in the ex-
periments. For each configuration, the size of the reconfiguration cache was also
changed: 2 to 512 slots, using the FIFO policy. The impact of doing speculation
is evaluated considering optimization of up to two basic blocks ahead. Finally, the
instruction/data cache memories were increased in order to achieve almost no cache
misses, so it was possible to evaluate the results without the influence of them.

Table 6.3 shows the IPC of the out-of-order processor and the average number of
branches per instructions (so one can observe the most control and dataflow oriented

www.manaraa.com

148 6 The DIM Reconfigurable System

Fig. 6.11 IPC of four different benchmarks being executed in the reconfigurable logic with differ-
ent configurations

algorithms). Figure 6.11 shows the IPC of the reconfigurable array, in different con-
figurations. For each configuration, three different speculation policies are used: no
speculation, 1 and 2 basic blocks ahead, varying the number of slots available in
the reconfiguration cache (4, 16, 64, 128 and 512). The four benchmarks presented
in this figure were chosen because they represent a very control-oriented algorithm,
a dataflow one and a midterm between both, plus the CRC, which is the biggest
benchmark in the subset.

As it is shown in Fig. 6.11, it is possible to achieve a higher IPC when executing
instructions on the reconfigurable array in comparison to the out-of-order super-
scalar processor, in almost all variations. However, the overall optimization when
using the proposed technique depends on how many instructions are executed on
the reconfigurable logic instead of using the normal processor flow.

Table 6.4 shows the overall speedup obtained when coupling the reconfigurable
array to the out-of-order processor, comparing them against the standalone out-of-
order. It is important to notice that, as already discussed, reconfigurable systems
usually show improvements only in very dataflow oriented programs. The DIM
technique, on the other hand, can optimize both control and data oriented programs.

www.manaraa.com

6.5 Case Studies 149

Table 6.4 Speedups using the reconfigurable array coupled to the out-of-order processor

6.5.2 Coupling the Array to the MIPS R3000 Processor

In [163], the DIM system was coupled to an improved VHDL version of the Min-
imips processor [165], which is based on the R3000 version. For area evaluation, the
Mentor Leonardo Spectrum tool has been used, and for power estimates, Synopsis
PowerCompiler, both with the TSMC 0.18u library. Data about power consumption
for the main memory was taken from [174]. The system was evaluated with the
Mibench Benchmark Suite [170]. All benchmarks with no representative floating
point computations and that could be compiled successfully to the target architec-
ture were utilized.

Table 6.5 shows three different array configurations used in the experiments. For
each one the context cache size is varied: 16, 64 and 512 slots. The impact of per-
forming speculation, up to three basic blocks, is also evaluated.

Table 6.6 demonstrates the speed up of the reconfigurable array for the three dif-
ferent configurations. It is ordered to show the most dataflow algorithms at the top
and the most control flow ones at the bottom. In configuration 3 with speculation,

www.manaraa.com

150 6 The DIM Reconfigurable System

Table 6.5 Different
configurations for the array,
when coupling to the MIPS
R3000

Table 6.6 Speedups using the reconfigurable array coupled to the MIPS R3000 processor

www.manaraa.com

6.5 Case Studies 151

Fig. 6.12 Speedups for four different benchmarks

an average performance improvement of more than 2.5 times is achieved. Moreover,
gains are shown regardless of the instruction/branch rate, even for very control ori-
ented algorithms such as RawAudio Decoder and Quicksort, as well as those which
do not have distinct kernels, such as Susan Corners. Together with these results,
there is an extra table at the right, demonstrating the overall optimization assum-
ing infinite hardware resources for the array. As it can be observed, with the best
configuration it is possible to get very close to this theoretical speedup in several
algorithms: just in five of them there is a significant difference between the most
aggressive configuration and the ideal. In fact, the algorithms that can most benefit
from hardware infinite resources are exactly the dataflow ones, since they demand
more rows in the array, mainly when speculation is used. They have as most exe-
cuted kernels basic blocks with a huge number of instructions. On the other hand,
in algorithms that have no distinct kernels, the most important resource to be in-
creased is the number of slots available in the cache memory. Figure 6.12 graphi-
cally shows the speedups for the CRC, RawAudio Decoder, Dijkstra and Rijndael
Decoder, while Fig. 6.13 summarizes the results.

Figure 6.14 demonstrates the average power consumed per cycle in the Array
coupled to the MIPS processor, with configurations 1 and 3 (shown as C#1 and C#3),
considering 64 cache slots, and executing the algorithms Rijndael E., Rawaudio D.
and JPEG E., the most control and data flow ones, and a mid-term, respectively.
The same Figure also shows the standalone MIPS processor, without the reconfig-
urable array. The consumption is shown separated for the core, data and instruction
memories, reconfigurable array and cache, and BT hardware. It is interesting to note

www.manaraa.com

152 6 The DIM Reconfigurable System

Fig. 6.13 An overview of the average speed up presented with different configurations

Fig. 6.14 Power consumed by 3 different algorithms in conf. 1 and 3, with and without specula-
tion, 64 cache slots

that the major responsible for power consumption are the memory accesses. In third
place comes the reconfigurable array. The power spent by this hardware depends on
how much it is used during the program execution. The MIPS processor, reconfigu-
ration cache and the BT hardware plays a minor role in this scenario.

In Fig. 6.15 the same experiment is repeated, but now analyzing the total energy
consumption. As the power consumed per cycle in the array coupled to the MIPS is
very similar to the standalone MIPS power consumption, but the number of cycles
is reduced in the first case, energy savings are achieved. Making a deeper analysis,
there are three main reasons for that:

• The execution of the instructions in a more effective way in combinational logic,
instead of using the processor path.

• Avoidance of repeated parallelism analysis. As commented before, there is no
necessity of performing the analysis repeatedly for the same sequence of code,
since DIM saves this information in its special cache. As commented previously
in this book, parallelism analysis is a huge source of power consumption.

www.manaraa.com

6.5 Case Studies 153

Fig. 6.15 Repeating the data of the previous figure, but now for energy consumption

• As it can be observed in Fig. 6.14, when using DIM, more power is spent in the
core, because of the BT hardware, reconfigurable array and its cache. On the other
hand, there are saves concerning the fetch of instructions from the memory, since
they reside in the reconfiguration cache, after their proper translation to an array’s
configuration.

For configuration 2, with 64 cache slots, the proposed system consumes 1.73
times less energy on average than the standalone MIPS core. Moreover, assuming
that the MIPS itself would be enough to handle real time constraints necessary for
a given application, one could reduce the system clock frequency to achieve exactly
the same performance level of the standalone processor, thus decreasing even more
the power and energy consumptions.

In order to give an idea of the area overhead, Table 6.7a shows the number of
functional units and multiplexers necessary to implement configuration 1, described
in Table 6.5, and the number of gates they take. Table 6.7 also shows the area oc-
cupied by the DIM hardware. In Table 6.7 b the number of bits necessary to store
one configuration in the context memory is presented. Note that, although 256 bits
are necessary for the Write Bitmap Table, they are not added to the final total, since
it is temporary and used just during detection. In Table 6.7c, the number of Bytes
needed for different cache sizes is presented.

The MimiMIPS, the used version of the MIPS3000 processor used for synthesis
purposes, occupies 26,712 gates. According to [181], the total number of transistors
of core in the MIPS R10000 is 2.4 million. As presented in Table 6.7a, the array
together with the hardware detection occupies 664,102 gates. Considering that one
gate is equivalent to 4 transistors, which would be the amount necessary to im-
plement a NAND or NOR gate, the whole system would take nearly 2.66 million
transistors to be implemented.

www.manaraa.com

154 6 The DIM Reconfigurable System

Table 6.7 Area evaluation

Finally, Tables 6.8 and 6.9 show, respectively, the number of functional units and
the total amount of gates they would take, varying the number of rows and columns
of the reconfigurable array.

6.5.3 Final Considerations

Considering all experiments, the performance numbers are mainly gathered through
simulation. As these simulations are cycle accurate, the level of accuracy is high.
All overheads, such as reconfiguration, context loading and write back were consid-
ered. The only exception was the simulations using sim-safe: in opposite to all other
simulations performed, sim-safe works at the instruction level. This way, an average
IPC was considered, based on several simulations previously performed in the cycle
accurate simulator.

It is important to note that for area estimates, synthesis results from the VHDL
versions of the hardware have been used, but before the place and routing phase.
This way, depending on the tool methodology and technology employed, area oc-
cupation will change. Even though it is known that the system will show its full
potential only when implemented as an ASIC, a prototype was implemented in the
Xilinx Virtex II Pro FPGA, as a proof of concept.

www.manaraa.com

6.6 DIM in Stack Machines 155

Table 6.8 Number of gates according to the number of functional units

6.6 DIM in Stack Machines

The DIM technique was first proposed in [157], where both BT hardware and the
reconfigurable array were coupled to the pipelined version of the Femtojava Pro-
cessor [154], a processor that natively executes Java bytecodes. A large number

www.manaraa.com

156 6 The DIM Reconfigurable System

Table 6.9 Number of bits necessary per cache slot, varying the number of rows and
columns of the array

of experiments have been done showing great performance improvements and re-
duction in energy consumption [156, 168, 176], even when compared to a VLIW
version of the same architecture [155]. In addition, first studies have been done in
order to optimize code at the object level using DIM [172]. Moreover, it has been
shown that the DIM mechanism can take advantage of the particular computational
method of stack machines in order to perform the detection with a low complex-
ity [160]. The tool employed to provide data on the energy consumption, memory
usage and performance was a configurable cycle-accurate simulator [164]. As the
Java processor is a stack machine, both BT mechanism as well as the structure of
the array are different from the RISC implementation.

6.7 On-Going and Future Works

The technique discussed in this chapter has been changing in several aspects to be
further improved. The next sub-sections show some of the designed improvements,
and demonstrate some future and ongoing work.

6.7.1 First Studies on the Ideal Shape of the Reconfigurable Array

In [177], studies about the ideal shape of the reconfigurable array considering a
wide range of different applications were performed. A tool was developed to exe-

www.manaraa.com

6.7 On-Going and Future Works 157

Fig. 6.16 (a) Original shape of the reconfigurable array (b) Optimized shape

cute several algorithms with different behaviors in order to find the best placement
of functional units inside the array, with the minimal performance loss possible.
Significant results were achieved concerning the area occupied by the system. Fig-
ure 6.16a shows the original shape of the array (rectangular). Figure 6.16b demon-
strates it after the optimization analysis.

Figure 6.17 shows the average gain in performance considering all the bench-
marks. Three different shapes were considered, varying the cache memory size. The
gains are relative to the standalone MIPS processor, without the array. It is possible
to observe that the new shape has a small performance loss (5.8% on average) when
comparing to the reconfigurable array 1 (original rectangular shape with a large
amount of functional units). However, the new shape has a performance improve-
ment of 3% over the reconfigurable array 2, which is also based on the rectangular
shape, but with a similar number of functional units as the new shape has. Even
though this relative gain appears to be low, it is important to point out that there is
an area reduction of almost 15%. In other words, when considering a similar num-
ber of functional units, the new shape presents a small performance improvement
and a considerable area reduction when comparing to its original form.

www.manaraa.com

158 6 The DIM Reconfigurable System

Fig. 6.17 Performance
comparison between different
shapes

Fig. 6.18 Sleep Transistor
coupled to a Functional Unit

6.7.2 Sleep Transistors

In [175] the DIM approach was used together with sleep transistors [178], so it
would be possible to decrease the power consumed by inactive functional units. The
BT algorithm was changed so it is aware of the existence of sleep transistors in the
array. Therefore, both leakage and dynamic power consumption are avoided, since
the power supply (Vdd) will not be present as well as there will be no switching
activity in their inputs. In the proposed system, each functional unit can be switched
off individually. Figure 6.18 shows its schematic block diagram. The area overhead
to build this low power architecture is of only two transistors per functional unit.

To use such approach, only a small modification in the BT algorithm has been
necessary. An extra bit was added for each functional unit. These bits correspond to
each functional unit status (on or off). At the beginning of execution, all functional
units are turned off. When the BT algorithm allocates an instruction in a functional
unit of the array, the bit for the sleep transistor that corresponds to that FU is set.
Therefore, when a given configuration is executed on the reconfigurable architec-
ture, all the functional units that have not been allocated to an instruction are kept
in the off state by the sleep transistors.

www.manaraa.com

References 159

6.7.3 Speculation of Variable Length

The speculation performed in the reconfigurable array has a fixed length, meaning
that it will always speculatively execute a fixed number of basic blocks ahead, even
if there are still free resources available in the array. However, with small modifi-
cations in the BT algorithm, it is possible to make the speculation with a variable
length concerning the basic blocks. For instance, the BT could speculate until there
are no more resources available in the array. This change would also influence the
reconfiguration cache.

6.7.4 DSP, SIMD and Other Extensions

Following a trend that can be observed in some of the reconfigurable systems found
in these days, this topic relates to the study about adding DSP and others extensions
in the array. This can be achieved by adding new hardware or optimizing the routing
mechanism (for instance, in the case of Multiply-and-Accumulate operations). The
BT hardware should be adapted in order to detect these new instructions. In the case
of SIMD instructions, one alternative would be to add a new group of functional
units supporting a larger word length. This approach could be extended to any kind
of special instruction depending on the desired field of application. The greatest
advantage of such extensions is that the array does not lose its backward compati-
bility: if the new extension is not used, the only drawback is the unused extra area
overhead.

6.7.5 Design Space to Be Explored

There is still a huge design space to be explored, with a lot of open questions, such
as:

• What is the best tradeoff considering the amount of instructions that can be exe-
cuted in parallel, or how many write backs to the registers or memory per cycle
is the ideal;

• How many configurations the context cache can store, and what is the best re-
placement policy for it;

• How deep is the ideal speculation regarding basic blocks;
• As all these configurations can be different depending on the characteristics of a

given benchmark, other benchmark sets should be evaluated, such as SPEC.

References

154. Beck, A.C.S., Cairo, L.: Low power java processor for embedded applications. In: VLSI-
SOC: From Systems to Chips. IFIP International Federation for Information Process-

www.manaraa.com

160 6 The DIM Reconfigurable System

ing, vol. 200, pp. 213–228. Springer, New York (2006). http://www.springerlink.com/
content/14rh612330184tu8/

155. Beck, A.C.S., Carro, L.: A vliw low power java processor for embedded applications. In:
SBCCI’04: Proceedings of the 17th Symposium on Integrated Circuits and System Design,
pp. 157–162. ACM, New York (2004). doi:10.1145/1016568.1016614

156. Beck, A.C.S., Carro, L.: Application of binary translation to java reconfigurable architec-
tures. In: IPDPS’05: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05)—Workshop 3, p. 156.2. IEEE Computer Society, Los
Alamitos (2005). doi:10.1109/IPDPS.2005.111

157. Beck, A.C.S., Carro, L.: Dynamic reconfiguration with binary translation: breaking the ilp
barrier with software compatibility. In: DAC’05: Proceedings of the 42nd Annual Design Au-
tomation Conference, pp. 732–737. ACM, New York (2005). doi:10.1145/1065579.1065771

158. Beck, A.C.S., Carro, L.: Transparent acceleration of data dependent instructions for general
purpose processors. In: IFIP VLSI-SoC 2007, IFIP WG 10.5 International Conference on
Very Large Scale Integration of System-on-Chip, Atlanta, GA, USA, 15–17 October 2007,
pp. 66–71. IEEE Press, New York (2007)

159. Beck, A.C.S., Carro, L.: Reconfigurable acceleration with binary compatibility for general
purpose processors. In: VLSI-SoC: Advanced Topics on Systems on a Chip. IFIP Interna-
tional Federation for Information Processing, vol. 291, pp. 1–16. Springer, New York (2009).
http://www.springerlink.com/content/p17618617681uvx3/

160. Beck, A.C.S., Gomes, V.F., Carro, L.: Exploiting java through binary translation for low
power embedded reconfigurable systems. In: SBCCI’05: Proceedings of the 18th Annual
Symposium on Integrated Circuits and System Design, pp. 92–97. ACM, New York (2005).
doi:10.1145/1081081.1081109

161. Beck, A.C.S., Gomes, V.F., Carro, L.: Automatic dataflow execution with reconfiguration and
dynamic instruction merging. In: IFIP VLSI-SoC 2006, IFIP WG 10.5 International Confer-
ence on Very Large Scale Integration of System-on-Chip, Nice, France, 16–18 October 2006,
pp. 30–35. IEEE Press, New York (2006)

162. Beck, A.C.S., Gomes, V.F., Carro, L.: Dynamic instruction merging and a reconfig-
urable array: Dataflow execution with software compatibility. In: Reconfigurable Com-
puting: Architectures and Applications. Lecture Notes in Computer Science, vol. 3985,
pp. 449–454. Springer, Berlin/Heidelberg (2006). http://www.springerlink.com/content/
86458544617q0366/

163. Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G., Carro, L.: Transparent reconfigurable acceler-
ation for heterogeneous embedded applications. In: DATE’08: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 1208–1213. ACM, New York (2008).
doi:10.1145/1403375.1403669

164. Beck Fl., A.C.S., Mattos, J.C.B., Wagner, F.R., Carro, L.: Caco-ps: A general purpose cycle-
accurate configurable power simulator. In: SBCCI’03: Proceedings of the 16th Symposium
on Integrated Circuits and Systems Design, p. 349. IEEE Computer Society, Los Alamitos
(2003)

165. Bem, E.Z., Petelczyc, L.: Minimips: a simulation project for the computer architecture labo-
ratory. In: SIGCSE’03: Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education, pp. 64–68. ACM, New York (2003). doi:10.1145/611892.611934

166. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. SIGARCH. Comput. Archit.
News 25(3), 13–25 (1997). doi:10.1145/268806.268810

167. Burns, J., Gaudiot, J.L.: Smt layout overhead and scalability. IEEE Trans. Parallel Distrib.
Syst. 13(2), 142–155 (2002). doi:10.1109/71.983942

168. Gomes, V.F., Beck, A.C.S., Carro, L.: Trading time and space on low power embedded ar-
chitectures with dynamic instruction merging. J. Low Power Electron. 1(3), 249–258 (2005)

169. Gonzalez, A., Tubella, J., Molina, C.: Trace-level reuse. In: ICPP’99: Proceedings of the
1999 International Conference on Parallel Processing, p. 30. IEEE Computer Society, Los
Alamitos (1999)

http://www.springerlink.com/content/14rh612330184tu8/
http://www.springerlink.com/content/14rh612330184tu8/
http://dx.doi.org/10.1145/1016568.1016614
http://dx.doi.org/10.1109/IPDPS.2005.111
http://dx.doi.org/10.1145/1065579.1065771
http://www.springerlink.com/content/p17618617681uvx3/
http://dx.doi.org/10.1145/1081081.1081109
http://www.springerlink.com/content/86458544617q0366/
http://www.springerlink.com/content/86458544617q0366/
http://dx.doi.org/10.1145/1403375.1403669
http://dx.doi.org/10.1145/611892.611934
http://dx.doi.org/10.1145/268806.268810
http://dx.doi.org/10.1109/71.983942

www.manaraa.com

References 161

170. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:
A free, commercially representative embedded benchmark suite. In: Workload Characteriza-
tion, 2001. WWC-4. 2001 IEEE International Workshop on, pp. 3–14 (2001)

171. Hennessy, J.L., Patterson, D.A.: Computer Architecture, 4th edn. A Quantitative Approach.
Morgan Kaufmann, San Mateo (2006)

172. de Mattos, J.C.B., Beck, A.C.S., Carro, L.: Object-oriented reconfiguration. In: 18th IEEE
International Workshop on Rapid System Prototyping (RSP 2007), 28–30 May 2007, Porto
Alegre, RS, Brazil, pp. 69–74. IEEE Computer Society, Los Alamitos (2007)

173. McLellan, E.J., Webb, D.A.: The alpha 21264 microprocessor architecture. In: ICCD’98:
Proceedings of the International Conference on Computer Design, p. 90. IEEE Computer
Society, Los Alamitos (1998)

174. Puttaswamy, K., Choi, K.W., Park, J.C., Mooney III, V.J., Chatterjee, A., Ellervee, P.:
System level power-performance trade-offs in embedded systems using voltage and fre-
quency scaling of off-chip buses and memory. In: ISSS’02: Proceedings of the 15th
International Symposium on System Synthesis, pp. 225–230. ACM, New York (2002).
doi:10.1145/581199.581249

175. Rutzig, M.B., Beck, A.C., Carro, L.: Dynamically adapted low power asips. In: ARC’09:
Proceedings of the 5th International Workshop on Reconfigurable Computing: Architectures,
Tools and Applications, pp. 110–122. Springer, Berlin/Heidelberg (2009)

176. Rutzig, M.B., Beck, A.C.S., Carro, L.: Transparent dataflow execution for embedded ap-
plications. In: ISVLSI’07: Proceedings of the IEEE Computer Society Annual Sympo-
sium on VLSI, pp. 47–54. IEEE Computer Society, Los Alamitos (2007). doi:10.1109/
ISVLSI.2007.98

177. Rutzig, M.B., Beck, A.C.S., Carro, L.: Balancing reconfigurable data path resources accord-
ing to application requirements. In: 22nd IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2008, Miami, Florida, USA, April 14–18, 2008, pp. 1–8. IEEE
Press, New York (2008)

178. Shi, K., Howard, D.: Challenges in sleep transistor design and implementation in low-
power designs. In: DAC’06: Proceedings of the 43rd Annual Design Automation Conference,
pp. 113–116. ACM, New York (2006). doi:10.1145/1146909.1146943

179. Smith, J.E.: A study of branch prediction strategies. In: ISCA’98: 25 Years of the Inter-
national Symposia on Computer Architecture (Selected Papers), pp. 202–215. ACM, New
York (1998). doi:10.1145/285930.285980

180. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: a first step to-
wards software power minimization. Readings in hardware/software co-design, pp. 222–230
(2002)

181. Yeager, K.C.: The mips r10000 superscalar microprocessor. IEEE Micro 16(2), 28–40
(1996). doi:10.1109/40.491460

http://dx.doi.org/10.1145/581199.581249
http://dx.doi.org/10.1109/ISVLSI.2007.98
http://dx.doi.org/10.1109/ISVLSI.2007.98
http://dx.doi.org/10.1145/1146909.1146943
http://dx.doi.org/10.1145/285930.285980
http://dx.doi.org/10.1109/40.491460

www.manaraa.com

Chapter 7
Conclusions and Future Trends

Abstract Besides concluding the book, this final chapter discusses different ideas
and new trends of reconfigurable architectures, such as the impact of new routing
mechanisms, how reconfigurable computing will eventually merge with multi pro-
cessors architectures, and how they will be used in the near future when the connec-
tion with future unreliable and non-scalable technologies must be done.

7.1 Introduction

This book presented several techniques that are candidates to be employed in a
near future. First, challenges and main motivations to use reconfigurable devices
were discussed. Then, the principles of reconfigurable systems, their potential and
classification were presented. After that, a large number of reconfigurable systems
was demonstrated. However, it has been shown that to reach a widespread use, such
architectures must somehow adapt to the applications, and even to changing patterns
of the same application during its execution. Hence, dynamic techniques became
necessary. That was the reason that binary translation and reuse (of instructions,
basic block, or traces) were discussed. Finally, architectures that jointly use both
ideas of reconfiguration and dynamic optimizations were shown, including detailed
analysis of one: the DIM architecture. In this chapter, some future directions and
new research topics about the techniques presented before are discussed.

7.2 Decreasing the Routing Area of Reconfigurable Systems

It has been shown that for the commercially available FPGAs, routing is a very im-
portant factor for what concerns area and power consumption [183]. Nevertheless,
the routing impact can also be observed in coarse grain architectures. For instance,
depending on the configuration used in [184], the multiplexers are responsible for
almost half the total area of the reconfigurable system.

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2_7, © Springer Science+Business Media B.V. 2010

163

http://dx.doi.org/10.1007/978-90-481-3913-2_7

www.manaraa.com

164 7 Conclusions and Future Trends

Fig. 7.1 (a) 8 × 8 Omega Network; (b) Four Switch States

This way, different structures have been proposed in order to decrease the im-
pact of routing resources. For example, in [189, 190] the employment of Multistage
Interconnection Network (MIN) was proposed to be used at the word level, on a
coarse-grained reconfigurable architecture. MINs have been successfully used in
several computer system levels and applications in the past. The approach takes
into account one-to-one as well as multicast (one-to-many) permutations, and can
handle blocking and non-blocking networks, symmetrical or asymmetrical topolo-
gies. Besides proposing the use of MIN at the register/ALU level, a new parallel
self-placement and routing mechanism that runs in real time during reconfiguration
execution that can be used in any kind of MIN was also presented.

The general overview of the implemented MIN, an N = 2k input/output Omega
Network, is shown in Fig. 7.1a. Each internal switch can assume four states, as
demonstrated in Fig. 7.1b. Considering that the network consists of lg2 N stages of
N/2 switches, where i is the row number and j is the column or stage level, the
stages are interconnected by the following pattern: switch output (i, j) is connected
to the switch input (2∗ i, j +1) when 0 < i < N/2; and to switch input ((2∗ i)N +1,

j + 1) when i > N/2. This way, the total number of switches is N/2 lg2 N . In the
illustrated example, input 1 (001) is connected to output 5 (101), and input 5 (101)

is connected to outputs 1 and 3. As in this example it is shown an one-to-many MIN,
one input can send data to one or more outputs. As can also be observed, there is
a collision at line 3, stage 1, when input 2 (010) tries to connect to output 7, and
input 4 (100) tries to connect to output 6 (101). Therefore, by adding an extra layer
the hardware responsible for the routing can find a path, with minimal hardware
overhead.

Replacing the multiplexers (that compose a structure very similar to a crossbar)
for the MIN in the architecture proposed in [184], an overall area reduction of 30%
without incurring in any performance overhead was presented. Albeit the case study
was applied to a specific reconfigurable system, it could be easily extended to be

www.manaraa.com

7.3 Measuring the Impact of the OS in Reconfigurable Systems 165

employed in any coarse grain architecture, such as Morphosys [194], Piperench
[191], and other two dimensional structures.

Another trend is the use of LUTs with more inputs. This way, there will be more
computation within one single computational block, decreasing the amount of com-
munication necessary between them. For instance, in [182] a study on the number
of LUT inputs and cluster size have been performed.

7.3 Measuring the Impact of the OS in Reconfigurable Systems

Operating Systems (OS) have been used in general purpose computing for decades.
On the other hand, the simple OS employed in embedded systems is being re-
placed for more complex ones. That happens because embedded devices with mul-
tiple functionalities are becoming a market mainstream. Multimedia applications,
communication protocols, input/output connectivity, all applications executing on a
portable device, possibly at the same time, exemplify the complex control needed
to manage these devices. Because of that, operating systems are being used as a fast
design solution to solve the difficult task of managing systems with several differ-
ent resources. Nevertheless, as OS is an extra software layer between the hardware
and the final application, performance, power and memory footprint are certainly
stressed.

Reconfigurable architectures should also be able to optimize OS code, such as
system calls. However, there is the problem of source code availability: usually,
traditional reconfigurable systems need the source code, so that they can transfer
and later optimize the code through execution in reconfigurable logic. Nevertheless,
some of the most used OS in the market do not have their source code available,
or recompiling it could be a huge task. Considering these motivations, in [184], the
two following questions are addressed:

• How much impact causes the OS routines in the execution time of the traditional
embedded applications?

• For the sake of hardware efficiency, how could the same reconfigurable hardware
be used to accelerate both embedded applications as well as OS routines?

As case study, the reconfigurable system used in [184] was coupled to a MIPS
R4000 processor running an embedded Linux distribution. Figure 7.2 shows the ap-
plications speedup considering several point of views. The leftmost bar illustrates
the speedup obtained using the accelerator when considering only instructions ex-
ecuted in the user mode. The second bar demonstrates the OS (Linux) code opti-
mization. In four applications the Linux optimization takes more cycles than the
user code, since many services are requested. If bitcount presents a higher speedup
for the user than the kernel code, stringsearch shows lower speedups when one con-
siders only the user code: a lot of time is spent in the kernel code. The average
speedup for Linux code is 2.70 times, while for user code is 2.84 times.

The third bar in Fig. 7.2 shows the speedup factor considering the optimization
of both user and kernel codes. This bar is strongly related to the dominant executed

www.manaraa.com

166 7 Conclusions and Future Trends

Fig. 7.2 How representative the OS routines are

code of each application. For instance, the total speedup bar of bitcount tends to
the leftmost bar, since, in this case, it represents the dominant executed code of the
application (user mode). On average, all applications present 2.76 times of perfor-
mance improvements.

To stress the importance of OS optimization, the fourth bar demonstrates the
environment found in traditional reconfigurable approaches. In this bar, only the
user code of the applications are accelerated, while OS code is executed as normal
instructions in the regular processor flow. On average, the reconfigurable system
would present performance boosts of only 1.5 times. To reinforce the same idea,
the last bar of each algorithm, in the same figure, simulates a four times speedup
factor in the user code applications, still without any OS code acceleration. This
bar aims to indicate that even high speedups achieved by a reconfigurable system,
but limited to the user code, produce poor overall acceleration. For instance, the
four times speedup factor for user code in stringsearch, gsmd, quicksort and fpsum
would bring a speedup of only 1.38 times considering total code execution.

7.4 Reconfigurable Systems to Increase the Yield

One of the major problems that industry faces nowadays is the decrease in the yield
rate. The cost of processors is directly influenced by the faults that occur during the
manufacturing process. Considering GPPs, if a single fault occurs in its control or
datapath, the whole processor must be discarded. On the other hand, if the fault hap-
pens in the cache memory and the processor has, for instance, two separate banks,
it still may be used.

The device’s miniaturization also increases the fault rates. The scaling process
shrinks the wire’s diameter. Besides making them more fragile and susceptible to
break, it is also harder to keep contact integrity between wires and devices. Ac-
cording to Borkar [185] in a 100 billion transistor device, 20 billion will fail in the
manufacture while 10 billion will fail in the first year of operation. The authors in
[188] state that at nano-scale basis, the defect rate should be around 1% to 15% for
wires and connections.

www.manaraa.com

7.5 Study of the Area Overhead with Technology Scaling and Future Technologies 167

Therefore, several approaches replicate hardware in order to maintain proper cir-
cuit working. However, traditional redundancy techniques based on resources repli-
cation, such as N-Modular Redundancy, can be extremely costly, not only because
of the large amount of area required to tolerate high defect densities [187], but also
for the excessive power dissipation they will bring.

Reconfigurable architectures are strong candidates to cope with these problems.
First, they consist essentially of identical functional elements. This regularity can
be exploited as spare-parts, as it has been done in memory devices for a long time
now [196]. Moreover, the reconfiguration capability can be exploited to change the
resources allocation based on the position of the defective elements. At the same
time, since reconfigurable architectures can adapt their behavior according to the
application, this characteristic can be exploited to amortize the performance degra-
dation caused by the replacement of defective resources.

Several and different solutions could be applied to be used with such systems.
For instance, a test in the reconfigurable fabric could be performed at the beginning
of execution, using an algorithm to test all parts of the reconfigurable array, marking
the non-functional ones. As the array occupies the majority of the die area, it is very
likely that any fail will occur at the reconfigurable part, thus increasing the overall
yield rate.

Up to now, the efforts are concentrated in tolerating permanent fabrication de-
fects. The approach consists in avoiding the defective functional units and intercon-
nection elements and replacing them by operational ones at the cost of a perfor-
mance penalty caused by the reduction of available resources. Several works pro-
pose the use of run-time reconfiguration to fault tolerance, and most of the them
are applied to fine grain FPGAs [186]. In [192] a mechanism to replace defective
elements in a dynamic system with a coarse grain array is proposed, with almost no
performance overhead introduced by the defect tolerance approach and reduction of
available resources. A performance analysis demonstrated that under a 20% defect
rate, the reconfigurable system was capable of sustaining the same performance.
The main idea of the approach is based on marking defective units as being always
busy, so no operations will be allocated in them.

7.5 Study of the Area Overhead with Technology Scaling
and Future Technologies

This study concerns the analysis of the area overhead of reconfigurable architectures
according to future technologies. What is the impact of using the reconfigurable
systems with an even larger area available in a near future? Furthermore, what are
the possibilities of implementing them using other technologies instead of silicon?
Considering the fact that the array is very regular and easily scalable, could that be
an advantage?

www.manaraa.com

168 7 Conclusions and Future Trends

7.6 Scheduling Targeting to Low-power

When building a reconfigurable instruction, the scheduling is done in a way to
achieve the highest possible level of parallelism. However, instead of trying to reach
the maximum performance, the scheduler could try to place instructions in the re-
configurable logic with the objective of keeping the largest possible number of basic
reconfigurable units turned off—decreasing the power consumed by the system. For
example, let us consider a coarse grain system. In a given configuration, there is an
opportunity of executing two instructions in parallel, but one of the functional units
necessary for that operation is turned off (the previous configuration was not using
it). This way, instead of allocating the instruction in that functional unit, another one
would be chosen, probably taking slightly more time to execute the current config-
uration, but saving power.

7.7 Granularity—Comparisons

Is a coarse grain reconfigurable system faster than a FPGA based one? If one con-
siders that the granularity of the first is coarser than the second, a simple operation
would be executed faster in a coarse grain array. However, at bit manipulation, FP-
GAs tend to obtain an advantage. Another issue is the routing. As already discussed,
FPGAs tend to spend a lot of routing resources. Moreover, what would be the dif-
ferences when, using some kind of generic tool (a fair environment) to build the
very same configuration for both fine and coarse grain arrays, and executing diverse
types of algorithms, that work at bit and word levels?

Another particular issue is to compare static FPGA systems against dynamic
coarse ones. FPGA synthesis tools are more intelligent and have more time to build a
configuration. This would be an advantage that could overcome some of the routing
and allocation problems cited before. A coarse grain and dynamic system, on the
other hand, needs to use a fixed structure and does not have any time to optimize it,
hence the routing algorithm should be as simple as possible.

7.8 Reconfigurable Systems Attacking Different Levels
of Instruction Granularity

7.8.1 Multithreading

The search for processing power in a limited design space has also been modifying
the whole paradigm of parallelism exploitation. The parallelism grain is not ex-
plored just at the instruction level anymore, but also at threads and processes levels.
To better illustrate what would be the difference between a regular reconfigurable ar-
chitecture and systems based on the multithreaded and simultaneous multithreading

www.manaraa.com

7.8 Reconfigurable Systems Attacking Different Levels of Instruction Granularity 169

Fig. 7.3 Configurations for different models and their functional units executing various threads

(SMT) approaches, Fig. 7.3 demonstrates three different configurations considering
a coarse grain reconfigurable system. Each square represents one functional unit
of the reconfigurable unit. If one square is filled, it means that the correspondent
functional unit was used. When it is empty, that functional unit was idle at that time.

Bringing the concept presented in [197] to the reconfigurable field, non-used
functional units can be characterized as horizontal or vertical waste. Horizontal
waste occurs when one or more functional units are not used within a row. Verti-
cal waste means that all units within a given row are not used at all (the whole row
was wasted). Figure 7.3a shows a configuration of a regular reconfigurable system
that executes only one thread at a time. In this configuration, horizontal waste can
be observed in rows 1, 2, 5, 7 and 9, while the vertical waste can be seen in rows 3,
4, 6, 8 and 10.

In Figs. 7.3b and 7.3c the configurations of the multithread and SMT processors
are shown, respectively. A multithread reconfigurable architecture could be able to
allocate instructions from different threads in different rows, helping to avoid ver-
tical waste. A SMT reconfigurable architecture, on the other hand, could allocate
instructions from different threads within the same rows. This way, if there is a
limit in the ILP that can be explored in one thread, the functional units can be fed
from others. By consequence, the horizontal waste is also dramatically reduced.
Examples of SMT implementations in general purpose computation are: Intel Pen-
tium 4 and Core i7 (which technology is called Hyperthreading), Alpha EV8, IBM
Power 5 and Sun Microsystems’ UltraSPARC T1. In [195], the authors started the
study on this subject considering reconfigurable systems, extending the Warp pro-
cessing technique to support several different threads to be executed concurrently.

www.manaraa.com

170 7 Conclusions and Future Trends

7.8.2 CMP

As can also be observed in these days, superscalar processors are giving space to
CMP (Chip Multi Processing), sometimes composed of simpler processors. New
processors produced by Intel and AMD, or the IBM Cell and Sun Niagara, are ex-
amples of this trend. One of the main reasons that motivate designers to use CMP is
the reduced design time necessary for its development, since the employed proces-
sors are usually already validated, allowing the reuse of existing designs. This way,
all the effort is focused on the communication between the components.

This way, extending reconfigurable architectures, following the CMP strategy,
can be a good focus of research. As an example, Fig. 7.4a shows a general overview
of how a regular reconfigurable architecture could be implemented: the communi-
cation between the components of the architecture and the processor is done using
dedicated buses, which makes its implementation not scalable considering the incre-
ment on the number of available RFUs. Figure 7.4b, in turn, illustrates how a CMP

Fig. 7.4 (a) Usual implementation (b) reconfigurable architecture based on CMP

www.manaraa.com

7.8 Reconfigurable Systems Attacking Different Levels of Instruction Granularity 171

Fig. 7.5 Communication alternatives. (a) Monolithic bus (b) Segmented bus (c) Intra chip network

www.manaraa.com

172 7 Conclusions and Future Trends

model could be implemented. With a new communication mechanism, it would be
possible to increase the number of RFUs.

There is a great number of open questions concerning reconfigurable CMP ar-
chitectures, such as: energy consumption, scalability, testability, fault tolerance,
reusability, partitioning of processes, etc. Furthermore, it is also necessary to an-
alyze the communication means between the components, as well as memory shar-
ing, such as monolithic buses Fig. 7.5a or segmented (Fig. 7.5b); or the use of a
crossbar or even intrachip networks (Fig. 7.5c). Finally, the possibility of imple-
menting a heterogeneous architecture, composed of different reconfigurable units
that can be used according to the process requirements at a given moment could be
evaluated. Similar studies using ordinary processors were done in [193].

7.9 Final Considerations

Systems will have to change and evolve. Different trends can be observed in the em-
bedded systems industry, for its products are presently being required to run several
different applications with distinct behaviors, becoming even more heterogeneous,
with extra pressure on power and energy consumption. Furthermore, while transis-
tor size shrinks, processors are getting more sensitive to fabrication defects, aging
and soft faults, increasing the costs associated to their production. To make this sit-
uation even worse, designers are stuck with the need to sustain binary compatibility,
in order to support the huge amount of software already deployed.

In this scenario, different hardware resources must be provided at different lev-
els: to better execute a single thread, according to a given set of constraints at a
certain time; to allocate resources and schedule different processes depending on
availability, performance requirements and the energy budget; or to sustain working
conditions when a fault occurs during run time, or to increase yield to allow cost
reductions even with aggressive scaling or the use of unreliable technologies.

In this changing scenario, adaptability is the key. Adaptive systems will have to
work at the processing and communication levels, to achieve performance optimiza-
tion, energy savings and fault tolerance at the same time. The techniques discussed
throughout this book show clear steps towards this main objective. However, there is
still a lot of work to be done and several strategies must be continuously developed
together to achieve such different and interrelated goals.

References

182. Ahmed, E., Rose, J.: The effect of lut and cluster size on deep-submicron fpga perfor-
mance and density. In: FPGA ’00: Proceedings of the 2000 ACM/SIGDA Eighth Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 3–12. ACM, New York (2000).
doi:10.1145/329166.329171

183. Anderson, J.H., Najm, F.N.: Low-power programmable routing circuitry for fpgas. In:
ICCAD ’04: Proceedings of the 2004 IEEE/ACM International Conference on Computer-
aided Design, pp. 602–609. IEEE Computer Society, Los Alamitos (2004). doi:10.1109/
ICCAD.2004.1382647

http://dx.doi.org/10.1145/329166.329171
http://dx.doi.org/10.1109/ICCAD.2004.1382647
http://dx.doi.org/10.1109/ICCAD.2004.1382647

www.manaraa.com

References 173

184. Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G., Carro, L.: Transparent reconfigurable acceler-
ation for heterogeneous embedded applications. In: DATE ’08: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 1208–1213. ACM, New York (2008).
doi:10.1145/1403375.1403669

185. Borkar, S.: Microarchitecture and design challenges for gigascale integration. In: MICRO 37:
Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,
p. 3. IEEE Computer Society, Los Alamitos (2004). doi:10.1109/MICRO.2004.24

186. Cheatham, J.A., Emmert, J.M., Baumgart, S.: A survey of fault tolerant methodologies for
fpgas. ACM Trans. Des. Autom. Electron. Syst. 11(2), 501–533 (2006). doi:10.1145/
1142155.1142167

187. Davis IV, N.J., Gray, F.G., Wegner, J.A., Lawson, S.E., Murthy, V., White, T.S.: Reconfig-
uring fault-tolerant two-dimensional array architectures. IEEE Micro 14(2), 60–69 (1994).
doi:10.1109/40.272839

188. DeHon, A., Naeimi, H.: Seven strategies for tolerating highly defective fabrication. IEEE
Des. Test 22(4), 306–315 (2005). doi:10.1109/MDT.2005.94

189. Ferreira, R., Laure, M., Beck, A.C., Lo, T., Rutzig, M., Carro, L.: A low cost and adaptable
routing network for reconfigurable systems. In: 23nd IEEE International Symposium on Par-
allel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23–29, 2009, pp. 1–8. IEEE
Press, New York (2009)

190. Ferreira, R., Laure, M., Rutzig, M.B., Beck, A.C., Carro, L.: Reducing interconnection cost in
coarse-grained dynamic computing through multistage network. In: FPL 2008, International
Conference on Field Programmable Logic and Applications, Heidelberg, Germany, 8–10
September 2008, pp. 47–52. IEEE Press, New York (2008)

191. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.: Piperench:
A reconfigurable architecture and compiler. Computer 33(4), 70–77 (2000). doi:10.1109/2.
839324

192. Magalhaes, M.P., Carro, L.: Automatic dataflow execution with reconfiguration and dynamic
instruction merging. In: IFIP VLSI-SoC 2009, IFIP WG 10.5 International Conference on
Very Large Scale Integration of System-on-Chip, Florianopolis, Brazil, 12–14 October 2009.
IEEE Press, New York (2009)

193. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.: The case for a single-
chip multiprocessor. In: ASPLOS-VII: Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 2–11.
ACM, New York (1996). doi:10.1145/237090.237140

194. Singh, H., Lee, M.H., Lu, G., Bagherzadeh, N., Kurdahi, F.J., Filho, E.M.C.: Morphosys: an
integrated reconfigurable system for data-parallel and computation-intensive applications.
IEEE Trans. Comput. 49(5), 465–481 (2000). doi:10.1109/12.859540

195. Stitt, G., Vahid, F.: Thread warping: a framework for dynamic synthesis of thread acceler-
ators. In: CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM International Conference
on Hardware/Software Codesign and System Synthesis, pp. 93–98. ACM, New York (2007).
doi:10.1145/1289816.1289841

196. Stott, E., Sedcole, N.P., Cheung, P.Y.K.: Fault tolerant methods for reliability in fpgas. In:
FPL 2008, International Conference on Field Programmable Logic and Applications, Hei-
delberg, Germany, 8–10 September 2008, pp. 415–420. IEEE Press, New York (2008)

197. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing on-chip
parallelism. In: ISCA ’98: 25 Years of the International Symposia on Computer Architecture
(Selected Papers), pp. 533–544. ACM, New York (1998). doi:10.1145/285930.286011

http://dx.doi.org/10.1145/1403375.1403669
http://dx.doi.org/10.1109/MICRO.2004.24
http://dx.doi.org/10.1145/1142155.1142167
http://dx.doi.org/10.1145/1142155.1142167
http://dx.doi.org/10.1109/40.272839
http://dx.doi.org/10.1109/MDT.2005.94
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1145/1289816.1289841
http://dx.doi.org/10.1145/285930.286011

www.manaraa.com

Index

A
Adaptability, 172
Application analysis, 31

coarse grain reconfigurable systems, 38
comparison, 41

area, 42
configuration context, 42
context memory, 42
performance, 42
power consumption, 42
reconfiguration time, 42

fine grain reconfigurable systems, 34
Application-specific

ASIC, 13
ASIP, 13

B
Benchmarks

A5, 69
ADPCM, 48, 67, 76
ATR, 60, 65, 86
bit reversal, 78, 80
blowfish, 128
bubblesort, 74
carphone, 62
claire, 62
compress, 48
container, 62
Conway’s Game of Life, 74, 86
Cordic, 86
DCT, 30, 60, 65, 86
DES, 48, 55, 69, 74, 84
DNA comparison, 48
Eqntott, 48, 84
FFT, 72, 74
FIR, 30, 56, 60, 67, 72, 86
G.721, 48

H264, 67
hamming, 78, 80
IDCT, 55, 67, 78
IDEA, 60, 65, 86
image compress, 84
image dithering, 84
Jacobi, 74
JPEG, 76, 78
MAC, 30, 120
matrix multiplication, 56, 74, 86
MC, 55
median filter, 72
MIDI, 81
MPEG, 65
MPEG encoder, 48
MPEG2, 55, 76
MPEG4, 72
Nqueens, 60, 86
OFDM, 56, 60
Over, 60, 86
Pegwit, 48, 76
PopCount, 60, 86
rapid, 55
RC5, 48
RGB conversion, 48
shortest path, 74
skeletonization, 48
sorting, 84
tennis, 62

Binary translation, 96
basics, 97
challenges, 99

atomic instructions, 100
code issues, 100
memory mapped IO, 99
operating system emulation, 100
register mapping, 99

A.C. Schneider Beck Fl., L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques,
DOI 10.1007/978-90-481-3913-2, © Springer Science+Business Media B.V. 2010

175

http://dx.doi.org/10.1007/978-90-481-3913-2

www.manaraa.com

176 Index

examples
Daisy, 101, 102
Dynamo, 105
FX32, 101, 108
HP Dynamo, 101
Transmeta Crusoe, 101, 106
VEST, 104

source architecture, 98
target architecture, 98
translation cache, 98
VMM—Virtual Machine Monitor, 98

Binary translator
static, 98

Block History Buffer, 112

C
CMP, 170
Configurability, 8

D
Dataflow machines, 14

examples
TRIPS, 81
wavescalar, 81

Decompilation, 122
DIM

basic steps, 134
BT algorithm, 138

additional extensions, 142
data structure, 139
handling false dependences, 143
speculative execution, 145

case studies
MIPS R3000, 149
superscalar processor, 145

detection, 137
energy savings, 152
execution, 136
performance results, 146, 148, 151
reconfigurable array, 134
reconfigurable system, 133
reconfiguration, 136
stack machines, 156

Dynamic optimization, 98
Dynamic partitioning, 119

E
Embedded systems, 131
Emulator, 98
Examples

ADRES, 66
Chess, 76
Chimaera, 46
Concise, 68

GARP, 49
Molen, 61
Morphosys, 63
Onechip, 75
PACT-XPP, 69
PRISM I, 78
PRISM II, 78
RAW, 73
REMARC, 52

F
FPGA

W-FPGA, 120

G
Granularity

coarse, 27
fine, 27

I
Instruction types

address, 29
instruction number, 29

Instructions per cycle, 2
Interpreter, 96

J
Just In Time compiler, 98

L
LUT, 47

M
Manufacture costs, 8
Memo Tables, 114
Memory-address alias analysis, 4
Merging

example, 22
Metrics

AMIL—Average Merged Instructions
Length, 22

CPII—Cycles Per Issue Interval, 20
IPC—Instruction Per Cycle, 20
IPII—Instructions Per Issue Interval, 20
MIR—Merged Instructions Rate, 22
NMI—Number of Merged Instructions, 22
OPI—Operation per Instructions, 20
Ppa—Absolute Processor Performance, 20

Microcode, 96
Mobile Supercomputers, 2
Multithreading, 169

N
Non-recurring engineering, 8

www.manaraa.com

Index 177

P
Partitioning, 123
Power

consumption, 2
leakage, 3

Prediction
branch, 4
jump, 5

Principles
reconfigurable systems, 15

R
Reconfigurability

configurable, 30
partial, 30
reconfigurable, 30

Reconfigurable logic, 6
Reconfigurable systems, 13

advantages, 20
classification, 24

code analysis and transformation, 24
granularity, 27
instruction types, 29
reconfigurability, 30
RU Coupling, 25

steps, 15
Reconfiguration steps

code analysis, 15
code transformation, 16
execution, 17
input context loading, 17
reconfiguration, 16
write back, 17

Register renaming, 4
Regularity, 8
Reliability, 8
Reuse, 109

block, 111
Block History Buffer, 112

Dynamic Trace Memoization, 114
Memo Tables, 114

instruction, 109
Reuse Buffer, 110

load value prediction, 111
reuse through speculation on traces, 115
trace, 112

Reuse Trace Memory, 113
value prediction, 111

value prediction table, 111
Reuse buffer, 110
Reuse trace memory, 113
RU coupling

attached to the processor, 26
coprocessor, 26
functional unit, 26, 27
loosely, 26
tightly, 26

S
SMT, 169
SoC, 119
Software compatibility, 7, 97
Software interpretation, 96
System on a chip, 131

T
Turnaround time, 8

V
Value prediction table, 111
Von Neumann model, 14

W
Warp Processing, 119

Y
Yield, 8, 166

	Preface
	Acknowledgements
	Contents
	Acronyms
	Introduction
	Challenges
	Main Motivations
	Overcoming Some Limits of the Parallelism
	Taking Advantage of Combinational and Reconfigurable Logic
	Software Compatibility and Reuse of Existent Binary Code
	Increasing Yield and Reducing Manufacture Costs

	This Book
	References

	Reconfigurable Systems
	Introduction
	Basic Principles
	Reconfiguration Steps

	Underlying Execution Mechanism
	Advantages of Using Reconfigurable Logic
	Application
	An Instruction Merging Example

	Reconfigurable Logic Classification
	Code Analysis and Transformation
	RU Coupling
	Granularity
	Instruction Types
	Reconfigurability

	Directions
	Heterogeneous Behavior of the Applications
	Potential for Using Fine Grained Reconfigurable Arrays
	Coarse Grain Reconfigurable Architectures
	Comparing Both Granularities

	References

	Deployment of Reconfigurable Systems
	Introduction
	Examples of Reconfigurable Architectures
	Chimaera
	RU Coupling
	Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	GARP
	RU Coupling
	Granularity
	Reconfigurable System
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	REMARC
	RU Coupling
	Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Rapid
	RU Coupling, Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Piperench (1999)
	RU Coupling
	Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Molen
	RU Coupling, Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Morphosys
	RU Coupling, Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	ADRES
	RU Coupling
	Reconfigurable System, Granularity, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Concise
	RU Coupling and Granularity
	Reconfigurable System, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	PACT-XPP
	RU Coupling
	Reconfigurable System, Granularity, Instruction Type
	Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	RAW
	RU Coupling
	Reconfigurable System and Granularity
	Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Onechip
	RU Coupling
	Reconfigurable System and Granularity
	Code Analysis and Transformation
	Instruction Type, Reconfiguration and Execution
	Evaluation

	Chess
	RU Coupling, Reconfigurable System, Granularity, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation, and Evaluation

	PRISM I
	RU Coupling, Reconfigurable System, Granularity, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	PRISM II
	RU Coupling
	Reconfigurable System, Granularity, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Nano
	RU Coupling
	Reconfigurable System, Granularity, Instruction Type, Reconfiguration and Execution
	Code Analysis and Transformation
	Evaluation

	Recent Dataflow Architectures
	Summary and Comparative Tables
	Other Reconfigurable Architectures
	Benchmarks

	References

	Dynamic Optimization Techniques
	Introduction
	Binary Translation
	Main Motivations
	Basic Concepts
	Challenges
	Register Mapping
	Memory Mapped I/O
	Atomic Instructions
	Issues Related to the Code
	OS Emulation

	Examples
	DAISY
	VEST
	DYNAMO
	Transmeta Crusoe
	FX!32

	Reuse
	Instruction Reuse
	Value Prediction
	Block Reuse
	Trace Reuse
	Dynamic Trace Memoization and RST

	References

	Dynamic Detection and Reconfiguration
	Warp Processing
	The Reconfigurable Array
	How Translation Works
	Evaluation

	Configurable Compute Array
	The Reconfigurable Array
	Instruction Translator
	Evaluation

	Drawbacks
	References

	The DIM Reconfigurable System
	Introduction
	General System Overview

	The Reconfigurable Array in Details
	Translation, Reconfiguration and Execution
	The BT Algorithm in Details
	Data Structure
	How It Works
	Additional Extensions
	Handling False Dependencies
	Speculative Execution

	Case Studies
	Coupling the Array to a Superscalar Processor
	Coupling the Array to the MIPS R3000 Processor
	Final Considerations

	DIM in Stack Machines
	On-Going and Future Works
	First Studies on the Ideal Shape of the Reconfigurable Array
	Sleep Transistors
	Speculation of Variable Length
	DSP, SIMD and Other Extensions
	Design Space to Be Explored

	References

	Conclusions and Future Trends
	Introduction
	Decreasing the Routing Area of Reconfigurable Systems
	Measuring the Impact of the OS in Reconfigurable Systems
	Reconfigurable Systems to Increase the Yield
	Study of the Area Overhead with Technology Scaling and Future Technologies
	Scheduling Targeting to Low-power
	Granularity-Comparisons
	Reconfigurable Systems Attacking Different Levels of Instruction Granularity
	Multithreading
	CMP

	Final Considerations
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

